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Introduction

• So	far	we’ve	looked	at	“generative	models”	
• Language	models,	Naive	Bayes	

• But	there	is	now	much	use	of	conditional	or	discriminative	
probabilistic	models	in	NLP,	Speech,	IR	(and	ML	generally)	

• Because:	
• They	give	high	accuracy	performance	
• They	make	it	easy	to	incorporate	lots	of	linguistically	important	features



Joint	vs.	Conditional	Models

• We	have	some	data	{(d,	c)}	of	paired	observations	d	
and	hidden	classes	c.	

• Joint	(generative)	models	place	probabilities	over	
both	observed	data	and	the	hidden	stuff	(gene-rate	
the	observed	data	from	hidden	stuff):		
• All	the	classic	StatNLP	models:	
• n-gram	models,	Naive	Bayes	classifiers,	hidden	Markov	
models,	probabilistic	context-free	grammars,	IBM	
machine	translation	alignment	models

P(c,d)



Joint	vs.	Conditional	Models

• Discriminative	(conditional)	models	take	the	data	as	
given,	and	put	a	probability	over	hidden	structure	
given	the	data:	

• Logistic	regression,	conditional	loglinear	or	maximum	
entropy	models,	conditional	random	fields	

• Also,	SVMs,	(averaged)	perceptron,	etc.	are	
discriminative	classifiers	(but	not	directly	probabilistic)

P(c|d)



Bayes	Net/Graphical	Models

• Bayes	net	diagrams	draw	circles	for	random	variables,	and	lines	for	direct	
dependencies	

• Some	variables	are	observed;	some	are	hidden	
• Each	node	is	a	little	classifier	(conditional	probability	table)	based	on	incoming	

arcs c

d1 d 2 d 3

Naive	Bayes

c

d1 d2 d3

Generative
Logistic	Regression

Discriminative



Conditional	vs.	Joint	Likelihood

• A	joint	model	gives	probabilities	P(d,c)	and	tries	to	maximize	this	
joint	likelihood.	
• It	turns	out	to	be	trivial	to	choose	weights:	just	relative	frequencies.	

• A	conditional	model	gives	probabilities	P(c|d).	It	takes	the	data	as	
given	and	models	only	the	conditional	probability	of	the	class.	
• We	seek	to	maximize	conditional	likelihood.	
• Harder	to	do	(as	we’ll	see…)	
• More	closely	related	to	classification	error.



Conditional	models	work	well:	  
Word	Sense	Disambiguation

• Even	with	exactly	the	same	
features,	changing	from	joint	
to	conditional	estimation	
increases	performance	

• That	is,	we	use	the	same	
smoothing,	and	the	same	
word-class	features,	we	just	
change	the	numbers	
(parameters)	

Training Set

Objective Accuracy

Joint Like. 86.8

Cond. Like. 98.5

Test Set

Objective Accuracy

Joint Like. 73.6

Cond. Like. 76.1

(Klein and Manning 2002, using Senseval-1 Data)
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Features

• In	these	slides	and	most	maxent	work:	features	f are	elementary	
pieces	of	evidence	that	link	aspects	of	what	we	observe	d	with	a	
category	c	that	we	want	to	predict	

• A	feature	is	a	function	with	a	bounded	real	value	



Example	features

• f1(c, d) ≡ [c = LOCATION ∧ w-1 = “in” ∧ isCapitalized(w)] 
• f2(c, d) ≡ [c = LOCATION ∧ hasAccentedLatinChar(w)] 
• f3(c, d) ≡ [c = DRUG ∧ ends(w, “c”)] 

• Models	will	assign	to	each	feature	a	weight:	
• A	positive	weight	votes	that	this	configuration	is	likely	correct	
• A	negative	weight	votes	that	this	configuration	is	likely	incorrect

 LOCATION 
in Québec

PERSON 
saw Sue

DRUG 
taking Zantac

LOCATION 
in Arcadia



Feature	Expectations

• We	will	crucially	make	use	of	two	expectations		
• actual	or	predicted	counts	of	a	feature	firing:	

• Empirical	count	(expectation)	of	a	feature:	

• Model	expectation	of	a	feature:
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Features

• In	NLP	uses,	usually	a	feature	specifies	
1. an	indicator	function	–	a	yes/no	boolean	matching	function	–	of	

properties	of	the	input	and	
2. a	particular	class	

         fi(c, d) ≡ [Φ(d) ∧ c = cj]            [Value	is	0	or	1] 

• Each	feature	picks	out	a	data	subset	and	suggests	a	label	for	it



Feature-Based	Models
• The	decision	about	a	data	point	is	based	only	on	the	

features	active	at	that	point.

BUSINESS: Stocks 
hit a yearly low …

Data

Features
{…, stocks, hit, a, 
yearly, low, …}

Label: BUSINESS

Text 
Categorization

… to restructure 
bank:MONEY debt.

Data

Features
{…, w-1=restructure, w
+1=debt, L=12, …}

Label: MONEY

Word-Sense 
Disambiguation

 DT      JJ       NN … 
The previous fall …

Data

Features
{w=fall, t-1=JJ 
w-1=previous}

Label: NN

POS Tagging



Example:	Text	Categorization

(Zhang	and	Oles	2001)	
• Features	are	presence	of	each	word	in	a	document	and	the	document	class	(they	do	

feature	selection	to	use	reliable	indicator	words)	
• Tests	on	classic	Reuters	data	set	(and	others)	

• Naïve	Bayes:	77.0%	F1	

• Linear	regression:	86.0%	
• Logistic	regression:	86.4%	
• Support	vector	machine:	86.5%	

• Paper	emphasizes	the	importance	of	regularization	(smoothing)	for	successful	use	of	
discriminative	methods	(not	used	in	much	early	NLP/IR	work)



Other	Maxent	Classifier	Examples

• You	can	use	a	maxent	classifier	whenever	you	want	to	assign	data	points	to	
one	of	a	number	of	classes:	
• Sentence	boundary	detection	(Mikheev	2000)	

• Is	a	period	end	of	sentence	or	abbreviation?	
• Sentiment	analysis	(Pang	and	Lee	2002)	
• Word	unigrams,	bigrams,	POS	counts,	…	

• PP	attachment	(Ratnaparkhi	1998)	
• Attach	to	verb	or	noun?	Features	of	head	noun,	preposition,	etc.	

• Parsing	decisions	in		general	(Ratnaparkhi	1997;	Johnson	et	al.	1999,	etc.)
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Feature-Based	Linear	Classifiers

• Linear	classifiers	at	classification	time:	
• Linear function from feature sets {fi} to classes {c}.  

• Assign a weight λi to each feature fi. 

• We consider each class for an observed datum d 

• For a pair (c,d), features vote with their weights:  

• vote(c) = Σλifi(c,d) 

• Choose the class c which maximizes Σλifi(c,d)

 LOCATION 
in Québec

DRUG 
in Québec

PERSON 
in Québec



Feature-Based	Linear	Classifiers

• Linear	classifiers	at	classification	time:	
• Linear function from feature sets {fi} to classes {c}.  

• Assign a weight λi to each feature fi. 

• We consider each class for an observed datum d 

• For a pair (c,d), features vote with their weights:  

• vote(c) = Σλifi(c,d) 

• Choose the class c which maximizes Σλifi(c,d) = LOCATION

1.8                      –0.6 
0.3 LOCATION 

in Québec
DRUG 

in Québec
PERSON 

in Québec



Feature-Based	Linear	Classifiers

There	are	many	ways	to	chose	weights	for	features	

• Perceptron:	find	a	currently	misclassified	example,	and	
nudge	weights	in	the	direction	of	its	correct	classification	

• Margin-based	methods	(Support	Vector	Machines)



Feature-Based	Linear	Classifiers
• Exponential	(log-linear,	maxent,	logistic,	Gibbs)	models:	

• Make	a	probabilistic	model	from	the	linear	combination	Σλifi(c,d)  

• P(LOCATION|in	Québec) = e1.8e–0.6/(e1.8e–0.6 + e0.3 + e0) = 0.586 

• P(DRUG|in	Québec) = e0.3 /(e1.8e–0.6 + e0.3 + e0) = 0.238 
• P(PERSON|in	Québec) = e0 /(e1.8e–0.6 + e0.3 + e0) = 0.176 

• The weights are the parameters of the probability 
model, combined via a “soft max” function
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Feature-Based	Linear	Classifiers

• Exponential	(log-linear,	maxent,	logistic,	Gibbs)	models:	
• Given	this	model	form,	we	will	choose	parameters	{λi}	that	
maximize	the	conditional	likelihood	of	the	data	according	
to	this	model.	

• We	construct	not	only	classifications,	but	probability	
distributions	over	classifications.	
• There	are	other	(good!)	ways	of	discriminating	classes	–	

SVMs,	boosting,	even	perceptrons	–	but	these	methods	are	
not	as	trivial	to	interpret	as	distributions	over	classes.



Aside:	logistic	regression

• Maxent	models	in	NLP	are	essentially	the	same	as	multiclass	
logistic	regression	models	in	statistics	(or	machine	learning)	
• If	you	haven’t	seen	these	before,	don’t	worry,	this	presentation	is	self-
contained!	

• If	you	have	seen	these	before	you	might	think	about:	
• The	parameterization	is	slightly	different	in	a	way	that	is	advantageous	
for	NLP-style	models	with	tons	of	sparse	features	(but	statistically	inelegant)	

• The	key	role	of	feature	functions	in	NLP	and	in	this	presentation	
• The	features	are	more	general,	with	f	also	being	a	function	of	the	class

24



Quiz Question

• Assuming exactly the same set up (3 class decision: LOCATION, 
PERSON, or DRUG; 3 features as before, maxent), what are: 
• P(PERSON	| by	Goéric)    =  

• P(LOCATION	| by	Goéric) =  

• P(DRUG	| by	Goéric)       =  

•  1.8    f1(c, d) ≡ [c = LOCATION ∧ w-1 = “in” ∧ isCapitalized(w)] 
• -0.6   f2(c, d) ≡ [c = LOCATION ∧ hasAccentedLatinChar(w)] 
•  0.3    f3(c, d) ≡ [c = DRUG ∧ ends(w, “c”)]
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PERSON 
by Goéric

LOCATION 
by Goéric

DRUG 
by Goéric
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Building	a	Maxent	Model

• We	define	features	(indicator	functions)	over	data	points	
• Features	represent	sets	of	data	points	which	are	distinctive	enough	to	deserve	
model	parameters.	
• Words,	but	also	“word	contains	number”,	“word	ends	with	ing”,	etc.	

• We	will	simply	encode	each	Φ feature	as	a	unique	String	
• A	datum	will	give	rise	to	a	set	of	Strings:	the	active	Φ features	
• Each	feature	fi(c, d) ≡ [Φ(d) ∧ c = cj] gets	a	real	number	weight	

• We	concentrate	on	Φ features	but	the	math	uses	i indices	of	fi



Building	a	Maxent	Model

• Features	are	often	added	during	model	development	to	target	errors	
• Often,	the	easiest	thing	to	think	of	are	features	that	mark	bad	combinations	

• Then,	for	any	given	feature	weights,	we	want	to	be	able	to	calculate:	
• Data	conditional	likelihood	
• Derivative	of	the	likelihood	wrt	each	feature	weight	

• Uses	expectations	of	each	feature	according	to	the	model	

• We	can	then	find	the	optimum	feature	weights	(discussed	later).
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Text	classification:	Asia	or	Europe

NB	FACTORS:	
• P(A)	=	P(E)	=		
• P(M|A)	=			
• P(M|E)	=	

Europe Asia

Class

X1=M

NB	Model PREDICTIONS: 
• P(A,M)	=		
• P(E,M)	=	 
• P(A|M)	=	 
• P(E|M)	=	

Training	Data
Monaco 
Monaco

Monaco Monaco 
Hong 
Kong

Hong 
Kong 
Monaco

Monaco Hong 
Kong

Hong 
Kong

Monaco 
Monaco



Text	classification:	Asia	or	Europe

NB	FACTORS:	
• P(A)	=	P(E)	=	
• P(H|A)	=	P(K|A)	=		
• P(H|E)	=	PK|E)	=	

Europe Asia

Class

X1=H X2=K

NB	Model PREDICTIONS: 
• P(A,H,K)	=		
• P(E,H,K)	=	 
• P(A|H,K)	=	 
• P(E|H,K)	=	

Training	Data
Monaco 
Monaco

Monaco Monaco 
Hong 
Kong

Hong 
Kong 
Monaco

Monaco Hong 
Kong

Hong 
Kong

Monaco 
Monaco



Text	classification:	Asia	or	Europe

NB	FACTORS:	
• P(A)	=	P(E)	=	
• P(M|A)	=		
• P(M|E)	=	
• P(H|A)	=	P(K|A)	=			
• P(H|E)	=	PK|E)	=	

Europe Asia

Class

H K

NB	Model PREDICTIONS: 
• P(A,H,K,M)	=		
• P(E,H,K,M)	=	 
• P(A|H,K,M)	=	 
• P(E|H,K,M)	=	

Training	Data

M

Monaco 
Monaco

Monaco Monaco 
Hong 
Kong

Hong 
Kong 
Monaco

Monaco Hong 
Kong

Hong 
Kong

Monaco 
Monaco



Naive	Bayes	vs.	Maxent	Models

• Naive	Bayes	models	multi-count	correlated	evidence	
• Each	feature	is	multiplied	in,	even	when	you	have	multiple	features	telling	
you	the	same	thing	

• Maximum	Entropy	models	(pretty	much)	solve	this	problem	
• As	we	will	see,	this	is	done	by	weighting	features	so	that	model	
expectations	match	the	observed	(empirical)	expectations
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Exponential	Model	Likelihood

• Maximum	(Conditional)	Likelihood	Models	:	
• Given	a	model	form,	choose	values	of	parameters	to	maximize	the	
(conditional)	likelihood	of	the	data.
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The	Likelihood	Value

• The	(log)	conditional	likelihood	of	iid	data	(C,D)	
according	to	maxent	model	is	a	function	of	the	data	
and	the	parameters	λ:	

• If	there	aren’t	many	values	of	c,	it’s	easy	to	
calculate:

∑∏
∈∈

==
),(),(),(),(

),|(log),|(log),|(log
DCdcDCdc

dcPdcPDCP λλλ

∑
∈

=
),(),(

log),|(log
DCdc

DCP λ
∑ ∑
'

),'(exp
c i

ii dcfλ

∑
i

ii dcf ),(exp λ



The	Likelihood	Value

• We	can	separate	this	into	two	components:	

• The	derivative	is	the	difference	between	the	
derivatives	of	each	component
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The	Derivative	I:	Numerator

Derivative	of	the	numerator	is:	the	empirical	count(fi,	c)
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The	Derivative	II:	Denominator
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The	Derivative	III

• The	optimum	parameters	are	the	ones	for	which	each	feature’s	
predicted	expectation	equals	its	empirical	expectation.		The	optimum	
distribution	is:	
• Always	unique	(but	parameters	may	not	be	unique)	
• Always	exists	(if	feature	counts	are	from	actual	data).
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Finding	the	optimal	parameters

• We	want	to	choose	parameters	λ1,	λ2,	λ3,	…	that	maximize	the	
conditional	log-likelihood	of	the	training	data	

• To	be	able	to	do	that,	we’ve	worked	out	how	to	calculate	the	
function	value	and	its	partial	derivatives	(its	gradient)
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A	likelihood	surface



Finding	the	optimal	parameters

• Use	your	favorite	numerical	optimization	package….	
• Commonly,	you	minimize	the	negative	of	CLogLik	

1. Gradient	descent	(GD);	Stochastic	gradient	descent	(SGD)	
2. Iterative	proportional	fitting	methods:	Generalized	Iterative	Scaling	(GIS)	

and	Improved	Iterative	Scaling	(IIS)	
3. Conjugate	gradient	(CG),	perhaps	with	preconditioning	
4. Quasi-Newton	methods	–	limited	memory	variable	metric	(LMVM)	

methods,	in	particular,	L-BFGS
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