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Introduction

So far we’ve looked at “generative models”

e Language models, Naive Bayes

But there is now much use of conditional or discriminative
probabilistic models in NLP, Speech, IR (and ML generally)

Because:

* They give high accuracy performance

 They make it easy to incorporate lots of linguistically important features



Joint vs. Conditional Models

e We have some data {(d, c)} of paired observations d
and hidden classes c.

e Joint (generative) models place probabilities over P(c.d)
both observed data and the hidden stuff (gene-rate ’
the observed data from hidden stuff):

e All the classic StatNLP models:

e n-gram models, Naive Bayes classifiers, hidden Markov
models, probabilistic context-free grammars, IBM
machine translation alignment models



Joint vs. Conditional Models

e Discriminative (conditional) models take the data as P(c|d)
given, and put a probability over hidden structure

given the data:
e Logistic regression, conditional loglinear or maximum
entropy models, conditional random fields

e Also, SVMs, (averaged) perceptron, etc. are
discriminative classifiers (but not directly probabilistic)



Bayes Net/Graphical Models

Bayes net diagrams draw circles for random variables, and lines for direct
dependencies

Some variables are observed; some are hidden
Each node is a little classifier (conditional probability table) based on incoming

.
Son &0

Naive Bayes Logistic Regression

Generative Discriminative



Conditional vs. Joint Likelihood

e A joint model gives probabilities P(d,c) and tries to maximize this
joint likelihood.

e |t turns out to be trivial to choose weights: just relative frequencies.

* A conditional model gives probabilities P(c|d). It takes the data as
given and models only the conditional probability of the class.
e We seek to maximize conditional likelihood.
e Harder to do (as we'll see...)
e More closely related to classification error.



Conditional models work well:
Word Sense Disambiguation

Training Set e Even with exactly the same
Objective Accuracy features, changing from joint
Joint Like. 6.8 to conditional estimation
increases performance
Cond. Like. 98.5
Test Set e Thatis, we use the same
— smoothing, and the same
Objective Accuracy word-class features, we just
Joint Like. 73.6 change the numbers
Cond. Like. 76.1 (parameters)

(Klein and Manning 2002, using Senseval-1 Data)
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Features

In these slides and most maxent work: features f are elementary
pieces of evidence that link aspects of what we observe d with a

category c that we want to predict
A feature is a function with a bounded real value



Example features

e fi(c, d)=[c=LOCATION A w_ =“In" A isCapitalized(w)]
o /-(c, d)=[c=LOCATION A hasAccentedLatinChar(w)]
e f5(c, d) =[c=DRUG A ends(w, “c”)

e Models will assign to each feature a weight:
* A positive weight votes that this configuration is likely correct

e A negative weight votes that this configuration is likely incorrect



Feature Expectations

e We will crucially make use of two expectations

e actual or predicted counts of a feature firing:

e Empirical count (expectation) of a feature:
cmp irical E( f') - E(C,d)Eobserved(C, D) fi(C’ d)

e Model expectation of a feature:

E( f/) = E(c,d)E(C,D) P(Ca d) fi(Ca d)



Features

e |n NLP uses, usually a feature specifies

1. an indicator function — a yes/no boolean matching function — of
properties of the input and

2. aparticular class
fic, d) =[D(d) A c=c]]

e Each feature picks out a data subset and suggests a label for it



Feature-Based Models

 The decision about a data point is based only on the
features active at that point.

Data Data Data
BUSINESS: Stocks ... to restructure DT ] NN ...
hit a yearly low ... bank:MONEY debt. The previous fall ...
Label: BUSINESS Label: MONEY Label: NN
Features Features Features
{..., stocks, hit, a, {..., w,=restructure, w | |{w=fall, ¢ =JJ
yearly, IOW, } +1=d€bt, =12, ...} W_1=previous}
Text Word-Sense POS Tagging

Categorization Disambiguation



Example: Text Categorization

(Zhang and Oles 2001)

e Features are presence of each word in a document and the document class (they do
feature selection to use reliable indicator words)

e Tests on classic Reuters data set (and others)
« Naive Bayes: 77.0% F,

e Linear regression: 86.0%
e Logistic regression: 86.4%
e Support vector machine: 86.5%

e Paper emphasizes the importance of regularization (smoothing) for successful use of
discriminative methods (not used in much early NLP/IR work)



Other Maxent Classifier Examples

* You can use a maxent classifier whenever you want to assign data points to
one of a number of classes:

e Sentence boundary detection (Mmikheev 2000)
e |s a period end of sentence or abbreviation?
e Sentiment analysis (Pang and Lee 2002)
* Word unigrams, bigrams, POS counts, ...
e PP attachment (Ratnaparkhi 1998)
e Attach to verb or noun? Features of head noun, preposition, etc.
e Parsing decisions in general (Ratnaparkhi 1997; Johnson et al. 1999, etc.)
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Feature-Based Linear Classifiers

e Linear classifiers at classification time:
e Linear function from feature sets {f} to classes {c}.

Assign a weight A to each feature f.

We consider each class for an observed datum d
For a pair (c,d), features vote with their weights:

o vote(c) = ZAf(c,d)

in Quéebec in Quebec in Québec

Choose the class ¢ which maximizes 2\ f(c,d)



Feature-Based Linear Classifiers

e Linear classifiers at classification time:
e Linear function from feature sets {f} to classes {c}.

Assign a weight A to each feature f.

We consider each class for an observed datum d
For a pair (c,d), features vote with their weights:

o vote(c) = ZAf(c,d)

in Québec

0.3
in Québec

Choose the class ¢ which maximizes 2\ f(c.d) =



Feature-Based Linear Classifiers

There are many ways to chose weights for features

e Perceptron: find a currently misclassified example, and
nudge weights in the direction of its correct classification

e Margin-based methods (Support Vector Machines)



Feature-Based Linear Classifiers

 Exponential (log-linear, maxent, logistic, Gibbs) models:
e Make a probabilistic model from the linear combination 2Af(c,d)

eXp 27\-/ f,(C,d) —Makes votes positive
P(c|d,\) =
2 CXp E A F,(C,d) —Normalizes votes
C ]
. P( |In Québec) — e].86—0.6/(e].86—0.6 + 603 + eO) — 0586

 The weights are the parameters of the probability
model, combined via a “soft max” function



Feature-Based Linear Classifiers

e Exponential (log-linear, maxent, logistic, Gibbs) models:

 Given this model form, we will choose parameters {A } that

maximize the conditional likelihood of the data according
to this model.

e We construct not only classifications, but probability
distributions over classifications.
e There are other (good!) ways of discriminating classes —

SVMs, boosting, even perceptrons — but these methods are
not as trivial to interpret as distributions over classes.
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Aside: logistic regression

Maxent models in NLP are essentially the same as multiclass
logistic regression models in statistics (or machine learning)

e |f you haven’t seen these before, don’t worry, this presentation is self-
contained!

e |f you have seen these before you might think about:

* The parameterization is slightly different in a way that is advantageous
for NLP-style models with tons of sparse features (but statistically inelegant)

* The key role of feature functions in NLP and in this presentation
* The features are more general, with falso being a function of the class



Quiz Question

 Assuming exactly the same set up (3 class decision: LOCATION,
PERSON, or DRUG; 3 features as before, maxent), what are:

o P( | by Goéric) =
e P( | by Goéric) =
o P( | by Goéric) =

o 1.8 fi(c, d)=[c=LOCATION A w_,=“in" A 1sCapitalized(w)]
o -0.6 f(c, d)=[c=LOCATION A hasAccentedLatinChar(w)]

o (c, d) = [¢c=DDRUG A ends(y—c? expzki fi(C, d)
P(c|d,\) = :
s, zexpz}\’lfl(c’ad)
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Building a Maxent Model

* We define features (indicator functions) over data points

* Features represent sets of data points which are distinctive enough to deserve
model parameters.

n  u

* Words, but also “word contains number”, “word ends with ing”, etc.

e We will simply encode each ® feature as a unique String
* A datum will give rise to a set of Strings: the active ® features

o Each featuref(c, d)=[D(d) A c= c].] gets a real number weight

e We concentrate on @ features but the math uses i/ indices offl.



Building a Maxent Model

e Features are often added during model development to target errors
e Often, the easiest thing to think of are features that mark bad combinations

e Then, for any given feature weights, we want to be able to calculate:
e Data conditional likelihood
e Derivative of the likelihood wrt each feature weight
e Uses expectations of each feature according to the model

e We can then find the optimum feature weights (discussed later).
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Text classification: Asia or Europe

Training Data

pRls. | | Sl | | e ES 53 Worses | | Fong || Forg
NB Model NB FACTORS: PREDICTIONS:
* P(A)=P(E)= * P(AM)=
e P(M|A)= e P(E,M) =
* P(MJE)= « P(A|M)=
« P(E|M) =




Text classification: Asia or Europe

Monaco Mohaco

Training Data

Monaco Monaco

Hong Monaco Hong

Hong

— Honee 2323 m:]%co Kong Kong
NB Model NB FACTORS: PREDICTIONS:
* P(A)=P(E)= e P(AHK)=
e P(H|A)=P(K|A)= « P(EHK)=
’ * P(H|E)=PK|E) = + P(A|H,K) =
« P(E|H,K) =




Text classification: Asia or Europe

Training Data

Monaco Monaco Monaco Monaco

Monaco Monaco Eg;]gg Eéaéco Monaco ESQS ESQS
NB Model NB FACTORS: PREDICTIONS:

: P(A) - P(E) - ° P(AIHIKIM) =
@ TP + PEHKM)=

e P(MJE)=
(OGO | o s ko -

e P(H|E)=PK|E) =  P(E|H,K,M) =




Naive Bayes vs. Maxent Models

e Naive Bayes models multi-count correlated evidence

e Each feature is multiplied in, even when you have multiple features telling
you the same thing

e Maximum Entropy models (pretty much) solve this problem

* As we will see, this is done by weighting features so that model
expectations match the observed (empirical) expectations
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Exponential Model Likelihood

e Maximum (Conditional) Likelihood Models :

e Given a model form, choose values of parameters to maximize the
(conditional) likelihood of the data.

exp Ek, f.(c d)
log P(C| D,\) = log P(c|d,\) = 2 log ’
(c,dY&(C,D) (c,d¥=(C,D) EGXPEK,- f,-(C',d)




The Likelihood Value

 The (log) conditional likelihood of iid data (C,D)

according to maxent model is a function of the data
and the parameters A:

log P(C| D,\) = log P(c|d,\) = log P(c| d,\)
(c, ,D) (c,d¥&(C,D)
e |f there aren’t many values of ¢, it’s easy to
calculate: eXpEK (¢, d)

log P(C| D,\) = ;
(c,dy&(C,D)

zexpzx, (c,d)



The Likelihood Value

e \We can separate this into two components:

log C|D,))= ) logexp ¥ N fi(cd) — & logyexp y i fi(c.d)

(¢c,d = C,D) (¢,dC,D)
log P(C| D,\) = N(L) = M())

e The derivative is the difference between the
derivatives of each component



The Derivative I: Numerator

0 logexp » A, fi(cd) 4 A f.(c d)
aN(}\)_ (c,d;C,D) Z (c,d;C,D)Z

(97\.,- 87\ I,
az A (¢ d)
(c,d;cw) A,

= fi(Cad)

(c,d)5(C,D)

Derivative of the numerator is: the empirical count(f, c)



The Derivative ll: Denominator

J log » exp » A, f;(C,d)
8M(k)= (c,d;C,D) Z 2

7y I,

]

1 azexpzk,f,(c’,d)
B (C,d;c,m Sexp > A, fi(c".d) o,

S exp S, f,(¢.d) S A, (¢, d)
B (c,d;C,D) 2 exp E A f(C',d) Z 1 o\,

eXpExifi(dad) az}\'ifi(d:d)

] (c,d;C,D) Z E eXPIE A fi(c',d) oA,

= 2 2 Rl d, ) fi(c,d) _ predicted count(f, A)
(c.dfTC.0) T




The Derivative lli
dlog P(C| D,\)

a}\ = actual count( f,, C)—predicted count( f,,\)

]
e The optimum parameters are the ones for which each feature’s

predicted expectation equals its empirical expectation. The optimum
distribution is:

e Always unique (but parameters may not be unique)
e Always exists (if feature counts are from actual data).



Finding the optimal parameters

We want to choose parameters A, A,, A, ... that maximize the
conditional log-likelihood of the training data

CLogLik(D) = E log P(c | d)
I=1

To be able to do that, we’ve worked out how to calculate the
function value and its partial derivatives (its gradient)



A likelihood surface




Finding the optimal parameters

e Use your favorite numerical optimization package....
e Commonly, you minimize the negative of CLogLik
Gradient descent (GD); Stochastic gradient descent (SGD)

2. lterative proportional fitting methods: Generalized Iterative Scaling (GIS)
and Improved lterative Scaling (11S)

3. Conjugate gradient (CG), perhaps with preconditioning

Quasi-Newton methods — limited memory variable metric (LMVM)
methods, in particular, L-BFGS
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