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» Parts of speech (POS)
= Tagsets

= POS Tagging
= Rule-based tagging
= HMMs and Viterbi algorithm



T
Parts of Speech

» 8 (ish) traditional parts of speech
= Noun, verb, adjective, preposition, adverb,
article, interjection, pronoun, conjunction, etc
= Called: parts-of-speech, lexical categories,
word classes, morphological classes, lexical
tags...
= Lots of debate within linguistics about the

number, nature, and universality of these
= We'll completely ignore this debate.



" POS examples

noun chair, bandwidth, pacing
verb study, debate, munch
adjective purple, tall, ridiculous
adverb  unfortunately, slowly
preposition of, by, to

pronoun I, me, mine

determiner the, a, that, those



~ POSTagging

= The process of assigning a part-of-speech
or lexical class marker to each word in a

collection.
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WHY IS !E! 'aggllng Use!ul!.

= First step of a vast number of practical tasks
o Speech synthesis

How to pronounce “lead”?
= INsult inSULT

= OBject obJECT

= QOVERflow overFLOW

= DIScount disCOUNT

= CONtent CONTENT
= Parsing

= Need to know if a word is an N or V before you can parse

» Information extraction

= Finding names, relations, etc.

= Machine Translation



spen ana Elosea Elasses

= Closed class: a small fixed membership
= Prepositions: of, in, by, ...
= Auxiliaries: may, can, will had, been, ...
= Pronouns: I, you, she, mine, his, them, ...
= Usually function words (short common words which
play a role in grammar)

= Open class: new ones can be created all the time
= English has 4: Nouns, Verbs, Adjectives, Adverbs
= Many languages have these 4, but not all!




pen CiasSs woras

= Nouns

= Proper nouns (Boulder, Granby, Eli Manning)
= English capitalizes these.
= Common nouns (the rest).

= Count nouns and mass nouns
= Count: have plurals, get counted: goat/goats, one goat, two goats
» Mass: don't get counted (snow, salt, communism) (*two snows)

= Adverbs: tend to modify things

= Unfortunately, John walked home extremely slowly yesterday
= Directional/locative adverbs (here,home, downhill)

= Degree adverbs (extremely, very, somewhat)

= Manner adverbs (slowly, slinkily, delicately)

= \erbs

= In English, have morphological affixes (eat/eats/eaten)



Examples:
= prepositions: on, under, over, ...
= particles: up, down, on, off, ...
= determiners: a, an, the, ...
= pronouns: she, who, I, ..
= conjunctions: and, but, or, ...
= guxiliary verbs: can, may should, ...
= numerals: one, two, three, third, ...
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"~ English Particles

aboard aside besides forward(s) opposite through
about astray between home out throughout
above away beyond n outside together
across back by mside over under
ahead before close mstead overhead underneath
alongside behind down near past up

apart below east, etc. off round within
around beneath eastward(s),etc. on since without

11



!onjlunc!llons
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!!! Iagglng

Choosing a Tagset

= There are so many parts of speech, potential distinctions
we can draw

» To do POS tagging, we need to choose a standard set of
tags to work with

= Could pick very coarse tagsets
= N, V, Adj, Adv.

= More commonly used set is finer grained, the “Penn

TreeBank tagset”, 45 tags
= PRP$, WRB, WP$, VBG

= Even more fine-grained tagsets exist
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enn ireeoan

agse

Tag  Description Example Tag  Description Example
CC coordin. conjunction and, but, or SYM symbol +.%, &
CD cardinal number one, two, three TO “to” to

DT determiner a, the UH interjection ah, oops
EX existential ‘there’ there VB  verb, base form eat

FW  foreign word mea culpa VBD verb, past tense ate

IN preposition/sub-conj of, in, by VBG verb, gerund eating

1] adjective vellow VBN verb, past participle eaten

JJR  adj., comparative bigger VBP verb, non-3sg pres  eat

JJS adj., superlative wildest VBZ verb, 3sg pres eats

LS list item marker 1, 2, One WDT wh-determiner which, that
MD  modal can, should WP  wh-pronoun what, who
NN  noun, sing. or mass Illama WPS possessive wh- whose
NNS  noun, plural llamas WRB wh-adverb how, where
NNP  proper noun, singular IBM $ dollar sign $

NNPS proper noun, plural  Carolinas # pound sign #

PDT predeterminer all, both - left quote “or
POS  possessive ending s 7 right quote or”
PRP  personal pronoun I, vou, he ( left parenthesis LGE. <
PRP$ possessive pronoun  your, one’s ) right parenthesis 1)}, >
RB adverb quickly, never , comma ,

RBR adverb, comparative faster sentence-final punc . ! ?

RBS adverb, superlative  fastest mid-sentence punc ;... —-
RP particle up, off
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Usllng !He !enn !agse!

» The/DT grand/JJ jury/NN commmented/
VBD on/IN a/DT number/NN of/IN other/]]
topics/NNS ./.

= Prepositions and subordinating
conjunctions marked IN (“although/IN I/
PRP..")

» Except the preposition/complementizer “to”
is just marked “"TO".

15



!B! Iagglng

= Words often have more than one PQOS:

back

= The back door = JJ

= On my back = NN

= Win the voters back = RB

= Promised to back the bill = VB

= The POS tagging problem is to determine
the POS tag for a particular instance of a
word.

These examples from Dekang Lin
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Ambiguity
87-tag Original Brown 45-tag Treebank Brown
Unambiguous (1 tag) 44,019 38,857
Ambiguous (2-7 tags) 5,490 8844
Details: 2 tags 4967 6,731
3 tags 411 1621
4 tags 91 357
S tags 17 90
6 tags 2 (well, beat) 32
7 tags 2 (still, down) 6 (well, set, round,
open, fit, down)
8 tags 4 (s, half, back, a)
9 tags 3 (that, more, in)

17



1. Rule-based tagging
= (ENGTWOL)

2. Stochastic

1. Probabilistic sequence models
= HMM (Hidden Markov Model) tagging
« MEMMs (Maximum Entropy Markov Models)
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" Rule-Based Tagging

= Start with a dictionary

= Assign all possible tags to words from the
dictionary

= Write rules by hand to selectively remove
tags

» Leaving the correct tag for each word.
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~ Start With a Dictionary

e she: PRP

* promised: VBN,VBD

e {0 TO

e back: VB, 1], RB, NN
* the: DT

 bill: NN, VB

e Etc... for the ~100,000 words of English with more
than 1 tag
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NN

RB
VBN JJ VB
PRP VBD TO VB DT NN

She promised to back the bill
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Mrl e Rules to Eliminate Tags

Eliminate VBN if VBD is an option when
VBNIVBD follows “<start> PRP”

NN

RB
VBN J] VB
PRP VBD TO VB DT NN

She promised to back the bill

22



o
Hidden Markov Model Tagging

= Using an HMM to do POS tagging is a

special case of Bayesian inference

= Foundational work in computational linguistics

= Bledsoe 1959: OCR

= Mosteller and Wallace 1964: authorship
identification

= It is also related to the “noisy channe
model that’s the basis for ASR, OCR and MT

III
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~ POS Tagging as Sequence

Classification

= We are given a sentence (an “observation”

or “sequence of observations”)
= Secretariat is expected to race tomorrow

» What is the best sequence of tags that
corresponds to this sequence of
observations?

= Probabilistic view:
= Consider all possible sequences of tags
= Out of this universe of sequences, choose the
tag sequence which is most probable given the
observation sequence of n words w;...w,.
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"~ Getting to HMMs

= We want, out of all sequences of n tags t;...t, the single
tag sequence such that P(t;...t |w,...w_) is highest.

il = argmax P(t] [w})
t;'

= Hat » means “our estimate of the best one”
= Argmax, f(x) means “the x such that f(x) is maximized”

25



aettllng to HMMS

= This equation is guaranteed to give us the
best tag sequence

f] = argmax P(r7|wf)
r;’

= But how to make it operational? How to
compute this value?

= Intuition of Bayesian classification:
= Use Bayes rule to transform this equation into
a set of other probabilities that are easier to
compute
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Pliy) = 2
. (Wil P(eh)
[ = argt?lax P{w)

i1 = argmax P(w!}|11)P(1])
f
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likelihood prior

i1

— argmax P(1]|w]) ~ argmaxHP (wilt;)P(ti]ti—1)
i o=l
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IWO !II‘IHS OI !I‘OEaEIII!IES

= Tag transition probabilities p(t|t._;)

= Determiners likely to precede adjs and nouns
= That/DT flight/NN
= The/DT yellow/]]J hat/NN
= S0 we expect P(NN|DT) and P(JJ|DT) to be high
= But P(DT|JJ) to be:

= Compute P(NN|DT) by counting in a labeled
COrpus:

C(ti_1,4)

P(tilt;_1) = Clo )

C(DT,NN) 56,509
C(DT) 116,454

P(NN|DT) = 49

29



IWO RII‘IHS OI BI‘OEBBIII!IES

« Word likelihood probabilities p(w:|t.)

= VBZ (3sg Pres verb) likely to be ™is”
= Compute P(is|VBZ) by counting in a labeled

corpus:
C(t,-,w,-)
P 1) =
(wilti) C(t,)
C(VBZ.,i 10,073
pislvpz) = SWBZ:1) 10,073

= = .47
C(VBZ) 21,627
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mxamp e: The Verb “race

= Secretariat/NNP is/VBZ expected/VBN to/TO
race/VB tomorrow/NR

= People/NNS continue/VB to/TO inquire/VB
the/DT reason/NN for/IN the/DT race/NN
for/IN outer/]] space/NN

= How do we pick the right tag?
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" Disambiguating “race”

Secretariat 5 expected to race tomorrow

Secretariat IS expected to race tomorrow

32



*

= P(NN|TO) = .00047

= P(VB|TO) = .83

= P(race|NN) = .00057

= P(race|VB) = .00012

= P(NR|VB) = .0027

= P(NR|NN) = .0012

= P(VB|TO)P(NR|VB)P(race|VB) = .00000027

= P(NN|TO)P(NR|NN)P(race|[NN)=.00000000032
= S0 we (correctly) choose the verb reading
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= What we've described with these two kinds
of probabilities is a Hidden Markov Model
(HMM)
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Markov Model”

= A set of states
= Q =qy, Q,...qy, the state at time tis g,

= Transition probabilities:
= a set of probabilities A = ay;ap,..-841---8pp-

= Each a; represents the probability of transitioning from

state | to state j
= The set of these is the transition probability matrix A

= Current state only depends on previous state

P(qi l%"qz'—l) = P(qi l%—l)
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rKov [ I I

= What is the probability of 4 consecutive hot
days?

= Sequence is hot-hot-hot-hot

= [.e., state sequence is 1-1-1-1

= P(1,1,1,1) =
= T,@;4@1;@1;91; = 0.2 X (0.6)3 = 0.0432
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Hle"el IOI‘ !ce !ream

= You are a climatologist in the year 2799
= Studying global warming

= You can't find any records of the weather
in Baltimore, MA for summer of 2007

g
= But you find Jason Eisner’s diary

= Which lists how many ice-creams Jason ate
every date that summer

= Qur job: figure out how hot it was

39



Hllaaen Markov Moael

= For Markov chains, the output symbols are the same

as the states.
= See hot weather: we're in state hot

» But in part-of-speech tagging (and other things)
= The output symbols are words
= But the hidden states are part-of-speech tags

= SO we need an extension!

» A Hidden Markov Model is an extension of a Markov
chain in which the input symbols are not the same as

the states.
= This means we don’t know which state we are in.
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en MarKov Modelis

States Q=gq,, q,.. Ay

Observations O=o,, o,.. 0.

= Each observation is a symbol from a vocabulary V = {Vi VoV )

Transition probabilities
« Transition probability matrix A = {a }

a;=P(q =jlg =i 1=i,j=N

Observation likelihoods
= Output probability matrix B={b.(k)}

b.(k)=P(X,=0,l1q, =1)

Special initial probability vector n
w,=P(q =1) l<sisN
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= Given
= Jce Cream Observation Sequence:
1,2,3,2,2,2,3...

= Produce:
= Weather Sequence: H,C,H,H,H,C...
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n=[.8,.2] 7

[P(1 ICOLD)] [5]
P21 cOLD) |=| 4
P3IcoLD) | | 1
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Transition Probabilities
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P(“aardvark” | TO)
i5(“race” | TO)
P(‘the” | TO)
P(t0” | TO)
'F'"(“zeb ra” 1 TO)

P(“aardvark” | NN)
P(“race” | NN)
P(“the” | NN)
P(“to” | NN)
P(“zebra” | NN)

P(“aardvark” | VB)
P(“race” | VB)
P(‘the” | VB)
P(“to” | VB)
i5(“zeb ra’ | VB)
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*eco ing

= Ok, now we have a complete model that can give
us what we need. Recall that we need to get

f] = argmax P(r7|w})
f
= We could just enumerate all paths given the

input and use the model to assign probabilities to

each.
= Not a good idea.
= Luckily dynamic programming helps us here
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I Il

function VITERBI(observations of len T,state-graph of len N) returns best-path

create a path probability matrix viterbi/N+2,T]

for each state s from 1 to N do ; initialization step
viterbi[s,1]«—aq s * bs(o7)
backpointer[s,1] 0

for each time step 7 from 2 to T do ; recursion step

for each state s from | to N do

. . N . :
viterbi[s,t] < max viterbi[s'.t — 1] * ay s * bs(o)

: N Sy
backpointer[s,t] — argmax viterbi[s',t — 1] * ay

s'=1
. . N : : L
viterbi[qr  T]+— max viterbi[s,T] * a4, ; termination step
s=1 ‘
. N : . N
backpointer[qr ,T]+ argmax viterbi[s,T| * as4; ; termination step
s=1

return the backtrace path by following backpointers to states back in time from

backpointer[qr.T ]
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q4

a3

a2

a4

o

l’— - \\I I’— B

+ end , +« end ,

\\ 4’ ‘\ -

v4(4)=.041 x 0=0

NN

\\ r’

I" - \\|

‘1o

v1(2) x P(VBIVB)\A

—_—

- backtrace =

®

v,(2)= max(0,0,0,.0055) x .0093 = .000051
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Vltergl gummary

= Create an array
= With columns corresponding to inputs
= Rows corresponding to possible states

= Sweep through the array in one pass filling
the columns left to right using our
transition probs and observations probs

= Dynamic programming key is that we need
only store the MAX prob path to each cell,
(not all paths).
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m

= S0 once you have you POS tagger running

how do you evaluate it?

= Overall error rate with respect to a gold-
standard test set.

= Error rates on particular tags

= Error rates on particular words

= Tag confusions...
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*alon

» The result is compared with a manually

coded “Gold Standard”

= Typically accuracy reaches 96-97%
= This may be compared with result for a
baseline tagger (one that uses no context).

= Important: 100% is impossible even for
human annotators.
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 Summary

» Parts of speech
= Tagsets
= Part of speech tagging

= HMM Tagging

= Markov Chains
= Hidden Markov Models
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