# Part-of-speech tagging 

## Klinton Bicknell

(borrowing from: Dan Jurafsky and Jim Martin)

## Today

- Parts of speech (POS)
- Tagsets
- POS Tagging
- Rule-based tagging
- HMMs and Viterbi algorithm


## Parts of Speech

- 8 (ish) traditional parts of speech
- Noun, verb, adjective, preposition, adverb, article, interjection, pronoun, conjunction, etc
- Called: parts-of-speech, lexical categories, word classes, morphological classes, lexical tags...
- Lots of debate within linguistics about the number, nature, and universality of these - We'll completely ignore this debate.


## POS examples

- N
- V
- ADJ
- ADV
- ${ }^{-1}$
- PRO
- DET
noun chair, bandwidth, pacing verb study, debate, munch adjective purple, tall, ridiculous adverb unfortunately, slowly preposition of, by, to pronoun I, me, mine determiner the, $a$, that, those


## POS Tagging

- The process of assigning a part-of-speech or lexical class marker to each word in a collection.


## WORD <br> tag

the
koala
put
the
keys
on
the
table

## Why is POS Tagging Useful?

- First step of a vast number of practical tasks
- Speech synthesis
" How to pronounce "lead"?
- INsult inSULT
- OBject
- OVERflow obJECT
- DIScount overFLOW disCOUNT
- CONtent conTENT
- Parsing
- Need to know if a word is an N or V before you can parse
- Information extraction
- Finding names, relations, etc.
- Machine Translation


## Open and Closed Classes

- Closed class: a small fixed membership
- Prepositions: of, in, by, ...
- Auxiliaries: may, can, will had, been, ...
- Pronouns: I, you, she, mine, his, them, ...
- Usually function words (short common words which play a role in grammar)
- Open class: new ones can be created all the time
- English has 4: Nouns, Verbs, Adjectives, Adverbs
- Many languages have these 4, but not all!


## Open Class Words

- Nouns
- Proper nouns (Boulder, Granby, Eli Manning)
- English capitalizes these.
- Common nouns (the rest).
- Count nouns and mass nouns
- Count: have plurals, get counted: goat/goats, one goat, two goats
- Mass: don't get counted (snow, salt, communism) (*two snows)
- Adverbs: tend to modify things
- Unfortunately, John walked home extremely slowly yesterday
- Directional/locative adverbs (here,home, downhill)
- Degree adverbs (extremely, very, somewhat)
- Manner adverbs (slowly, slinkily, delicately)
- Verbs
- In English, have morphological affixes (eat/eats/eaten)


## Closed Class Words

Examples:

- prepositions: on, under, over, ...
- particles: up, down, on, off, ...
- determiners: a, an, the, ...
- pronouns: she, who, I, ..
- conjunctions: and, but, or, ...
- auxiliary verbs: can, may should, ...
- numerals: one, two, three, third, ...


## Prepositions from CELEX

| of | 540,085 | through | 14,964 | worth | 1,563 | pace | 12 |
| :--- | ---: | :--- | ---: | :--- | ---: | :--- | ---: |
| in | 331,235 | after | 13,670 | toward | 1,390 | nigh | 9 |
| for | 142,421 | between | 13,275 | plus | 750 | re | 4 |
| to | 125,691 | under | 9,525 | till | 686 | mid | 3 |
| with | 124,965 | per | 6,515 | amongst | 525 | o'er | 2 |
| on | 109,129 | among | 5,090 | via | 351 | but | 0 |
| at | 100,169 | within | 5,030 | amid | 222 | ere | 0 |
| by | 77,794 | towards | 4,700 | underneath | 164 | less | 0 |
| from | 74,843 | above | 3,056 | versus | 113 | midst | 0 |
| about | 38,428 | near | 2,026 | amidst | 67 | o | 0 |
| than | 20,210 | off | 1,695 | sans | 20 | thru | 0 |
| over | 18,071 | past | 1,575 | circa | 14 | vice | 0 |

## English Particles

| aboard | aside | besides | forward(s) | opposite | through |
| :--- | :--- | :--- | :--- | :--- | :--- |
| about | astray | between | home | out | throughout |
| above | away | beyond | in | outside | together |
| across | back | by | inside | over | under |
| ahead | before | close | instead | overhead | underneath |
| alongside | behind | down | near | past | up |
| apart | below | east, etc. | off | round | within |
| around | beneath | eastward(s),etc. | on | since | without |

## Conjunctions

| and | 514,946 | yet | 5,040 | considering | 174 | forasmuch as | 0 |
| :--- | ---: | :--- | ---: | :--- | :--- | :--- | :--- |
| that | 134,773 | since | 4,843 | lest | 131 | however | 0 |
| but | 96,889 | where | 3,952 | albeit | 104 | immediately | 0 |
| or | 76,563 | nor | 3,078 | providing | 96 | in as far as | 0 |
| as | 54,608 | once | 2,826 | whereupon | 85 | in so far as | 0 |
| if | 53,917 | unless | 2,205 | seeing | 63 | inasmuch as | 0 |
| when | 37,975 | why | 1,333 | directly | 26 | insomuch as | 0 |
| because | 23,626 | now | 1,290 | ere | 12 | insomuch that | 0 |
| so | 12,933 | neither | 1,120 | notwithstanding | 3 | like | 0 |
| before | 10,720 | whenever | 913 | according as | 0 | neither nor | 0 |
| though | 10,329 | whereas | 867 | as if | 0 | now that | 0 |
| than | 9,511 | except | 864 | as long as | 0 | only | 0 |
| while | 8,144 | till | 686 | as though | 0 | provided that | 0 |
| after | 7,042 | provided | 594 | both and | 0 | providing that | 0 |
| whether | 5,978 | whilst | 351 | but that | 0 | seeing as | 0 |
| for | 5,935 | suppose | 281 | but then | 0 | seeing as how | 0 |
| although | 5,424 | cos | 188 | but then again | 0 | seeing that | 0 |
| until | 5,072 | supposing | 185 | either or | 0 | without | 0 |

## POS Tagging Choosing a Tagset

- There are so many parts of speech, potential distinctions we can draw
- To do POS tagging, we need to choose a standard set of tags to work with
- Could pick very coarse tagsets
- N, V, Adj, Adv.
- More commonly used set is finer grained, the "Penn TreeBank tagset", 45 tags
- PRP\$, WRB, WP\$, VBG
- Even more fine-grained tagsets exist


# Penn TreeBank POS Tagset 

| Tag | Description | Example | Tag | Description | Example |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CC | coordin. conjunction | and, but, or | SYM | symbol |  |
| CD | cardinal number | one, two, three | TO | "to" | to |
| DT | determiner | a, the | UH | interjection | ah, oops |
| EX | existential 'there' | there | VB | verb, base form | eat |
| FW | foreign word | mea culpa | VBD | verb, past tense | ate |
| IN | preposition/sub-conj | of, in, by | VBG | verb, gerund | eating |
| JJ | adjective | yellow | VBN | verb, past participle | eaten |
| JJR | adj., comparative | bigger | VBP | verb, non-3sg pres | eat |
| JJS | adj., superlative | wildest | VBZ | verb, 3 sg pres | eats |
| LS | list item marker | 1, 2, One | WDT | wh-determiner | which, that |
| MD | modal | can, should | WP | wh-pronoun | what, who |
| NN | noun, sing. or mass | llama | WP\$ | possessive wh- | whose |
| NNS | noun, plural | llamas | WRB | wh-adverb | how, where |
| NNP | proper noun, singular | IBM | \$ | dollar sign | \$ |
| NNPS | proper noun, plural | Carolinas | \# | pound sign | \# |
| PDT | predeterminer | all, both | " | left quote | ' or " |
| POS | possessive ending | 's | " | right quote | , or " |
| PRP | personal pronoun | I, you, he | ( | left parenthesis | [, $\left(,\left\{^{\prime},<\right.\right.$ |
| PRP\$ | possessive pronoun | your, one's | ) | right parenthesis | ], ), \}, > |
| RB | adverb | quickly, never |  | comma |  |
| RBR | adverb, comparative | faster |  | sentence-final punc | !? |
| RBS | adverb, superlative | fastest | . | mid-sentence punc | , ... |
| RP | particle | up, off |  |  |  |

## Using the Penn Tagset

- The/DT grand/JJ jury/NN commmented/ VBD on/IN a/DT number/NN of/IN other/JJ topics/NNS./.
- Prepositions and subordinating conjunctions marked IN ("although/IN I/ PRP..")
- Except the preposition/complementizer "to" is just marked "TO".


## POS Tagging

- Words often have more than one POS: back
- The back door = JJ
- On my back = NN
- Win the voters back = RB
- Promised to back the bill = VB
- The POS tagging problem is to determine the POS tag for a particular instance of a word.


## How Hard is POS Tagging? Measuring Ambiguity

|  | 87-tag Original Brown | 45-tag Treebank Brown |  |
| :---: | :---: | ---: | :--- |
| Unambiguous (1 tag) | $\mathbf{4 4 , 0 1 9}$ | $\mathbf{3 8 , 8 5 7}$ |  |
| Ambiguous (2-7 tags) | $\mathbf{5 , 4 9 0}$ | $\mathbf{8 8 4 4}$ |  |
| Details: 2 tags | 4,967 | 6,731 |  |
|  | 3 tags | 411 | 1621 |
| 4 tags | 91 | 357 |  |
| 5 tags | 17 | 90 |  |
| 6 tags | 2 (well, beat) | 32 |  |
| 7 tags | 2 (still, down) | 6 (well, set, round, |  |
|  |  | 4 open, fit, down) |  |
| 8 tags |  | 3 (that, malf, back, are, in) |  |
| 9 tags |  |  |  |

## Two Methods for POS Tagging

1. Rule-based tagging

- (ENGTWOL)

2. Stochastic
3. Probabilistic sequence models

- HMM (Hidden Markov Model) tagging
- MEMMs (Maximum Entropy Markov Models)


## Rule-Based Tagging

- Start with a dictionary
- Assign all possible tags to words from the dictionary
- Write rules by hand to selectively remove tags
- Leaving the correct tag for each word.


## Start With a Dictionary

- she:
- promised: VBN,VBD
- to
- back:
- the:
- bill:

PRP

TO
VB, JJ, RB, NN
DT
NN, VB

- Etc... for the $\sim 100,000$ words of English with more than 1 tag


# Assign Every Possible Tag 

## NN <br> RB

VBN
JJ
VB

PRP VBD TO VB DT NN She promised to back the bill

## Write Rules to Eliminate Tags

Eliminate VBN if VBD is an option when VBNIVBD follows "<start> PRP"

VBN
NN RB

PRP VBD
She promised
TO VB DT NN
to back the bill

## Hidden Markov Model Tagging

- Using an HMM to do POS tagging is a special case of Bayesian inference
- Foundational work in computational linguistics
- Bledsoe 1959: OCR
- Mosteller and Wallace 1964: authorship identification
- It is also related to the "noisy channel" model that's the basis for ASR, OCR and MT


## POS Tagging as Sequence Classification

- We are given a sentence (an "observation" or "sequence of observations")
- Secretariat is expected to race tomorrow
- What is the best sequence of tags that corresponds to this sequence of observations?
- Probabilistic view:
- Consider all possible sequences of tags
- Out of this universe of sequences, choose the tag sequence which is most probable given the observation sequence of n words $\mathrm{w}_{1} \ldots \mathrm{w}_{\mathrm{n}}$.


## Getting to HMMs

- We want, out of all sequences of $n$ tags $t_{1} \ldots t_{n}$ the single tag sequence such that $\mathrm{P}\left(\mathrm{t}_{1} \ldots \mathrm{t}_{\mathrm{n}} \mid \mathrm{w}_{1} \ldots \mathrm{w}_{\mathrm{n}}\right)$ is highest.

$$
\hat{t}_{1}^{n}=\underset{t_{1}^{n}}{\operatorname{argmax}} P\left(t_{1}^{n} \mid w_{1}^{n}\right)
$$

- Hat ^ means "our estimate of the best one"
- Argmax $f(x)$ means "the $x$ such that $f(x)$ is maximized"


## Getting to HMMs

- This equation is guaranteed to give us the best tag sequence

$$
\hat{t}_{1}^{n}=\underset{t_{1}^{n}}{\operatorname{argmax}} P\left(t_{1}^{n} \mid w_{1}^{n}\right)
$$

- But how to make it operational? How to compute this value?
- Intuition of Bayesian classification:
- Use Bayes rule to transform this equation into a set of other probabilities that are easier to compute


## Using Bayes Rule

$$
\begin{gathered}
P(x \mid y)=\frac{P(y \mid x) P(x)}{P(y)} \\
\hat{t}_{1}^{n}=\underset{t_{1}^{n}}{\operatorname{argmax}} \frac{P\left(w_{1}^{n} \mid t_{1}^{n}\right) P\left(t_{1}^{n}\right)}{P\left(w_{1}^{n}\right)}
\end{gathered}
$$

$\hat{t}_{1}^{n}=\operatorname{argmax} P\left(w_{1}^{n} \mid t_{1}^{n}\right) P\left(t_{1}^{n}\right)$ $t_{1}^{n}$

## Likelihood and Prior

likelihood prior

$$
\hat{t}_{1}^{n}=\underset{t_{1}^{n}}{\operatorname{argmax}} \overbrace{P\left(w_{1}^{n} \mid t_{1}^{n}\right)} \overbrace{P\left(t_{1}^{n}\right)}
$$

$$
P\left(w_{1}^{n} \mid t_{1}^{n}\right) \approx \prod_{i=1} P\left(w_{i} \mid t_{i}\right)
$$

$$
P\left(t_{1}^{n}\right) \approx \prod_{i=1}^{n} P\left(t_{i} \mid t_{i-1}\right)
$$

$$
\hat{t}_{1}^{n}=\underset{t_{1}^{n}}{\operatorname{argmax}} P\left(t_{1}^{n} \mid w_{1}^{n}\right) \approx \underset{t_{1}^{n}}{\operatorname{argmax}} \prod_{i=1}^{n} P\left(w_{i} \mid t_{i}\right) P\left(t_{i} \mid t_{i-1}\right)
$$

## Two Kinds of Probabilities

- Tag transition probabilities $\mathrm{p}\left(\mathrm{t}_{\mathrm{i}} \mid \mathrm{t}_{\mathrm{i}-1}\right)$
- Determiners likely to precede adjs and nouns
- That/DT flight/NN
- The/DT yellow/JJ hat/NN
- So we expect P(NN|DT) and P(JJ|DT) to be high
- But P(DT|JJ) to be:
- Compute P(NN|DT) by counting in a labeled corpus:

$$
P\left(t_{i} \mid t_{i-1}\right)=\frac{C\left(t_{i-1}, t_{i}\right)}{C\left(t_{i-1}\right)}
$$

$$
P(N N \mid D T)=\frac{C(D T, N N)}{C(D T)}=\frac{56,509}{116,454}=.49
$$

## Two Kinds of Probabilities

- Word likelihood probabilities $p\left(w_{i} \mid t_{i}\right)$
- VBZ (3sg Pres verb) likely to be "is"
- Compute P(is|VBZ) by counting in a labeled corpus:

$$
\begin{gathered}
P\left(w_{i} \mid t_{i}\right)=\frac{C\left(t_{i}, w_{i}\right)}{C\left(t_{i}\right)} \\
P(i s \mid V B Z)=\frac{C(V B Z, i s)}{C(V B Z)}=\frac{10,073}{21,627}=.47
\end{gathered}
$$

## Example: The Verb "race"

- Secretariat/NNP is/VBZ expected/VBN to/TO race/VB tomorrow/NR
- People/NNS continue/VB to/TO inquire/VB the/DT reason/NN for/IN the/DT race/NN for/IN outer/JJ space/NN
- How do we pick the right tag?


## Disambiguating "race"

(a)

(b)


## Example

- $P(N N \mid T O)=.00047$
- $P(V B \mid T O)=.83$
- $P($ race $\mid N N)=.00057$
- $P($ race $\mid V B)=.00012$
- $P(N R \mid V B)=.0027$
- $P(N R \mid N N)=.0012$
- $P(V B \mid T O) P(N R \mid V B) P($ race|VB $)=.00000027$
- P(NN|TO)P(NR|NN)P(race|NN)=. 00000000032
- So we (correctly) choose the verb reading


## Hidden Markov Models

- What we've described with these two kinds of probabilities is a Hidden Markov Model (HMM)


## Markov Chain for Weather



## Markov Chain for Words



## Markov Chain: "First-order observable Markov Model"

- A set of states
- $\mathrm{Q}=\mathrm{q}_{1}, \mathrm{q}_{2} \ldots \mathrm{q}_{\mathrm{N}}$, the state at time t is $\mathrm{q}_{\mathrm{t}}$
- Transition probabilities:
- a set of probabilities $A=a_{01} a_{02} \ldots a_{n 1} \ldots a_{n n}$.
- Each $\mathrm{a}_{\mathrm{ij}}$ represents the probability of transitioning from state i to state $j$
- The set of these is the transition probability matrix $A$
- Current state only depends on previous state

$$
P\left(q_{i} \mid q_{1} \ldots q_{i-1}\right)=P\left(q_{i} \mid q_{i-1}\right)
$$

## Markov Chain for Weather

- What is the probability of 4 consecutive hot days?
- Sequence is hot-hot-hot-hot
- I.e., state sequence is 1-1-1-1
- $\mathrm{P}(1,1,1,1)=$
- $\pi_{1} a_{11} a_{11} a_{11} a_{11}=0.2 \times(0.6)^{3}=0.0432$


## HMM for Ice Cream

- You are a climatologist in the year 2799
- Studying global warming
- You can't find any records of the weather in Baltimore, MA for summer of 2007
- But you find Jason Eisner's diary

- Which lists how many ice-creams Jason ate every date that summer
- Our job: figure out how hot it was


## Hidden Markov Model

- For Markov chains, the output symbols are the same as the states.
- See hot weather: we're in state hot
- But in part-of-speech tagging (and other things)
- The output symbols are words
- But the hidden states are part-of-speech tags
- So we need an extension!
- A Hidden Markov Model is an extension of a Markov chain in which the input symbols are not the same as the states.
- This means we don't know which state we are in.


## Hidden Markov Models

- States $\mathrm{Q}=\mathrm{q}_{1}, \mathrm{q}_{2} \ldots \mathrm{q}_{\mathrm{N}}$;
- Observations $\mathrm{O}=\mathrm{o}_{1}, \mathrm{o}_{2} \ldots \mathrm{o}_{\mathrm{N}}$;
- Each observation is a symbol from a vocabulary $\mathrm{V}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{v}}\right\}$
- Transition probabilities
- Transition probability matrix $\mathrm{A}=\left\{\mathrm{a}_{\mathrm{ij}}\right\}$

$$
a_{i j}=P\left(q_{t}=j \mid q_{t-1}=i\right) \quad 1 \leq i, j \leq N
$$

- Observation likelihoods
- Output probability matrix $B=\left\{b_{i}(\mathrm{k})\right\}$

$$
b_{i}(k)=P\left(X_{t}=o_{k} \mid q_{t}=i\right)
$$

- Special initial probability vector $\pi$

$$
\pi_{i}=P\left(q_{1}=i\right) \quad 1 \leq i \leq N
$$

## Eisner Task

- Given
- Ice Cream Observation Sequence: 1,2,3,2,2,2,3...
- Produce:
- Weather Sequence: H,C,H,H,H,C...


## HMM for Ice Cream



## Transition Probabilities



## Observation Likelihoods



## Decoding

- Ok, now we have a complete model that can give us what we need. Recall that we need to get

$$
\hat{t}_{1}^{n}=\underset{t_{1}^{n}}{\operatorname{argmax}} P\left(t_{1}^{n} \mid w_{1}^{n}\right)
$$

- We could just enumerate all paths given the input and use the model to assign probabilities to each.
- Not a good idea.
- Luckily dynamic programming helps us here


## The Viterbi Algorithm

## function VITERBI(observations of len $T$,state-graph of len $N$ ) returns best-path

create a path probability matrix viterbi $[N+2, T]$
for each state $s$ from 1 to $N$ do ; initialization step
viterbi $[s, 1] \leftarrow a_{0, s} * b_{s}\left(o_{1}\right)$
backpointer $[\mathrm{s}, 1] \leftarrow 0$
for each time step $t$ from 2 to $T$ do
; recursion step
for each state $s$ from 1 to $N$ do
viterbi $[\mathrm{s}, \mathrm{t}] \leftarrow \max _{s^{\prime}=1}^{N}$ viterbi $\left[s^{\prime}, t-1\right] * a_{s^{\prime}, s} * b_{s}\left(o_{t}\right)$
backpointer $[\mathrm{s}, \mathrm{t}] \stackrel{N}{\leftarrow \operatorname{argmax}}$ viterbi $\left[s^{\prime}, t-1\right] * a_{s^{\prime}, s}$

$$
s^{\prime}=1
$$


viterbi $\left[q_{F}, \mathrm{~T}\right] \leftarrow \max _{s=1}^{N}$ viterbi $[s, T] * a_{s, q_{F}} \quad$; termination step
backpointer $\left[q_{F}, \mathrm{~T}\right] \leftarrow \stackrel{N}{\operatorname{argmax}}$ viterbi $[s, T] * a_{s, q_{F}} \quad$; termination step
$s=1$
return the backtrace path by following backpointers to states back in time from backpointer $\left[q_{F}, T\right]$

## Viterbi Example



## Viterbi Summary

- Create an array
- With columns corresponding to inputs
- Rows corresponding to possible states
- Sweep through the array in one pass filling the columns left to right using our transition probs and observations probs
- Dynamic programming key is that we need only store the MAX prob path to each cell, (not all paths).


## Evaluation

- So once you have you POS tagger running how do you evaluate it?
- Overall error rate with respect to a goldstandard test set.
- Error rates on particular tags
- Error rates on particular words
- Tag confusions...


## Evaluation

- The result is compared with a manually coded "Gold Standard"
- Typically accuracy reaches 96-97\%
- This may be compared with result for a baseline tagger (one that uses no context).
- Important: 100\% is impossible even for human annotators.


## Summary

- Parts of speech
- Tagsets
- Part of speech tagging
- HMM Tagging
- Markov Chains
- Hidden Markov Models

