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Today

▪ Parts of speech (POS) 
▪ Tagsets 
▪ POS Tagging 
▪ Rule-based tagging 
▪ HMMs and Viterbi algorithm
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Parts of Speech

▪ 8 (ish) traditional parts of speech 
▪ Noun, verb, adjective, preposition, adverb, 

article, interjection, pronoun, conjunction, etc 
▪ Called: parts-of-speech, lexical categories, 

word classes, morphological classes, lexical 
tags... 

▪ Lots of debate within linguistics about the 
number, nature, and universality of these 
▪We’ll completely ignore this debate.
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POS examples

▪ N  noun  chair, bandwidth, pacing 
▪ V  verb  study, debate, munch 
▪ ADJ adjective purple, tall, ridiculous 
▪ ADV adverb unfortunately, slowly 
▪ P  preposition of, by, to 
▪ PRO pronoun I, me, mine 
▪ DET determiner the, a, that, those
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POS Tagging

▪ The process of assigning a part-of-speech 
or lexical class marker to each word in a 
collection.    WORD    tag 

   the   DET 
   koala   N 
   put    V 
   the    DET 
   keys   N 
   on   P 
   the   DET 
   table   N
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Why is POS Tagging Useful? 

▪ First step of a vast number of practical tasks  
▪ Speech synthesis 

▪ How to pronounce “lead”? 
▪ INsult   inSULT 
▪ OBject   obJECT 
▪ OVERflow   overFLOW 
▪ DIScount  disCOUNT 
▪ CONtent   conTENT 

▪ Parsing 
▪ Need to know if a word is an N or V before you can parse 

▪ Information extraction 
▪ Finding names, relations, etc. 

▪ Machine Translation
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Open and Closed Classes

▪ Closed class: a small fixed membership  
▪ Prepositions: of, in, by, … 
▪ Auxiliaries: may, can, will had, been, … 
▪ Pronouns: I, you, she, mine, his, them, … 
▪ Usually function words (short common words which 

play a role in grammar) 

▪ Open class: new ones can be created all the time 
▪ English has 4: Nouns, Verbs, Adjectives, Adverbs 
▪ Many languages have these 4, but not all!
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Open Class Words

▪ Nouns 
▪ Proper nouns (Boulder, Granby, Eli Manning) 

▪ English capitalizes these. 
▪ Common nouns (the rest).  
▪ Count nouns and mass nouns 

▪ Count: have plurals, get counted: goat/goats, one goat, two goats 
▪ Mass: don’t get counted (snow, salt, communism) (*two snows) 

▪ Adverbs: tend to modify things 
▪ Unfortunately, John walked home extremely slowly yesterday 
▪ Directional/locative adverbs (here,home, downhill) 
▪ Degree adverbs (extremely, very, somewhat) 
▪ Manner adverbs (slowly, slinkily, delicately) 

▪ Verbs 
▪ In English, have morphological affixes (eat/eats/eaten)
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Closed Class Words

Examples: 
▪ prepositions: on, under, over, … 
▪ particles: up, down, on, off, … 
▪ determiners: a, an, the, … 
▪ pronouns: she, who, I, .. 
▪ conjunctions: and, but, or, … 
▪ auxiliary verbs: can, may should, … 
▪ numerals: one, two, three, third, …
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Prepositions from CELEX
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English Particles
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Conjunctions
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POS Tagging  
Choosing a Tagset

▪ There are so many parts of speech, potential distinctions 
we can draw 

▪ To do POS tagging, we need to choose a standard set of 
tags to work with 

▪ Could pick very coarse tagsets 
▪ N, V, Adj, Adv. 

▪ More commonly used set is finer grained, the “Penn 
TreeBank tagset”, 45 tags 
▪ PRP$, WRB, WP$, VBG 

▪ Even more fine-grained tagsets exist
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Penn TreeBank POS Tagset
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Using the Penn Tagset

▪ The/DT grand/JJ jury/NN commmented/
VBD on/IN a/DT number/NN of/IN other/JJ 
topics/NNS ./. 

▪ Prepositions and subordinating 
conjunctions marked IN (“although/IN I/
PRP..”) 

▪ Except the preposition/complementizer “to” 
is just marked “TO”.
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POS Tagging

▪ Words often have more than one POS: 
back 
▪ The back door = JJ 
▪ On my back = NN 
▪ Win the voters back = RB 
▪ Promised to back the bill = VB 

▪ The POS tagging problem is to determine 
the POS tag for a particular instance of a 
word.

These examples from Dekang Lin
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How Hard is POS Tagging? Measuring 
Ambiguity
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Two Methods for POS Tagging

1. Rule-based tagging 
▪ (ENGTWOL) 

2. Stochastic 
1. Probabilistic sequence models 
▪ HMM (Hidden Markov Model) tagging 
▪ MEMMs (Maximum Entropy Markov Models)
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Rule-Based Tagging

▪ Start with a dictionary 
▪ Assign all possible tags to words from the 

dictionary 
▪ Write rules by hand to selectively remove 

tags 
▪ Leaving the correct tag for each word.
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Start With a Dictionary
• she:  PRP 
• promised: VBN,VBD 
• to   TO 
• back:  VB, JJ, RB, NN  
• the:  DT 
• bill:          NN, VB 

• Etc… for the ~100,000 words of English with more 
than 1 tag 
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Assign Every Possible Tag

     NN 
     RB   
  VBN   JJ             VB 

PRP VBD   TO VB     DT  NN 
She promised to   back the  bill
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Write Rules to Eliminate Tags

Eliminate VBN if VBD is an option when 
VBN|VBD follows “<start> PRP”

            NN 
            RB   
            JJ   VB 

PRP VBD         TO   VB  DT NN 
She promised to back the bill

VBN
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Hidden Markov Model Tagging

▪ Using an HMM to do POS tagging is a 
special case of Bayesian inference 
▪ Foundational work in computational linguistics 
▪ Bledsoe 1959: OCR 
▪ Mosteller and Wallace 1964: authorship 

identification 

▪ It is also related to the “noisy channel” 
model that’s the basis for ASR, OCR and MT 



24

POS Tagging as Sequence 
Classification

▪ We are given a sentence (an “observation” 
or “sequence of observations”) 
▪ Secretariat is expected to race tomorrow 

▪ What is the best sequence of tags that 
corresponds to this sequence of 
observations? 

▪ Probabilistic view: 
▪ Consider all possible sequences of tags 
▪ Out of this universe of sequences, choose the 

tag sequence which is most probable given the 
observation sequence of n words w1…wn.
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Getting to HMMs
▪ We want, out of all sequences of n tags t1…tn the single 

tag sequence such that P(t1…tn|w1…wn) is highest. 

▪ Hat ^ means “our estimate of the best one” 
▪ Argmaxx f(x) means “the x such that f(x) is maximized”
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Getting to HMMs

▪ This equation is guaranteed to give us the 
best tag sequence 

▪ But how to make it operational? How to 
compute this value? 

▪ Intuition of Bayesian classification: 
▪ Use Bayes rule to transform this equation into 

a set of other probabilities that are easier to 
compute
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Using Bayes Rule



28

Likelihood and Prior
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Two Kinds of Probabilities

▪ Tag transition probabilities p(ti|ti-1) 
▪ Determiners likely to precede adjs and nouns 
▪ That/DT flight/NN 
▪ The/DT yellow/JJ hat/NN 
▪ So we expect P(NN|DT) and P(JJ|DT) to be high 
▪ But P(DT|JJ) to be: 

▪ Compute P(NN|DT) by counting in a labeled 
corpus:
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Two Kinds of Probabilities

▪Word likelihood probabilities p(wi|ti) 
▪ VBZ (3sg Pres verb) likely to be “is” 
▪ Compute P(is|VBZ) by counting in a labeled 

corpus:



▪ Secretariat/NNP is/VBZ expected/VBN to/TO 
race/VB tomorrow/NR 

▪ People/NNS continue/VB to/TO inquire/VB 
the/DT reason/NN for/IN the/DT race/NN 
for/IN outer/JJ space/NN 

▪ How do we pick the right tag?
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Example: The Verb “race”



32

Disambiguating “race”
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Example

▪ P(NN|TO) = .00047 
▪ P(VB|TO) = .83 
▪ P(race|NN) = .00057 
▪ P(race|VB) = .00012 
▪ P(NR|VB) = .0027 
▪ P(NR|NN) = .0012 
▪ P(VB|TO)P(NR|VB)P(race|VB) = .00000027 
▪ P(NN|TO)P(NR|NN)P(race|NN)=.00000000032 
▪ So we (correctly) choose the verb reading
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Hidden Markov Models

▪ What we’ve described with these two kinds 
of probabilities is a Hidden Markov Model 
(HMM)



35

Markov Chain for Weather
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Markov Chain for Words
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Markov Chain: “First-order observable 
Markov Model”

▪ A set of states  
▪ Q = q1, q2…qN;  the state at time t is qt 

▪ Transition probabilities:  
▪ a set of probabilities A = a01a02…an1…ann.  
▪ Each aij represents the probability of transitioning from 

state i to state j 
▪ The set of these is the transition probability matrix A 

▪ Current state only depends on previous state 

€ 

P(qi |q1...qi−1) = P(qi |qi−1)
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Markov Chain for Weather

▪ What is the probability of 4 consecutive hot 
days? 

▪ Sequence is hot-hot-hot-hot 
▪ I.e., state sequence is 1-1-1-1 
▪ P(1,1,1,1) =  
▪ π1a11a11a11a11 = 0.2 x (0.6)3 = 0.0432
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HMM for Ice Cream

▪ You are a climatologist in the year 2799 
▪ Studying global warming 
▪ You can’t find any records of the weather 

in Baltimore, MA for summer of 2007 
▪ But you find Jason Eisner’s diary 
▪ Which lists how many ice-creams Jason ate 

every date that summer 
▪ Our job: figure out how hot it was
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Hidden Markov Model

▪ For Markov chains, the output symbols are the same 
as the states. 
▪ See hot weather: we’re in state hot 

▪ But in part-of-speech tagging (and other things) 
▪ The output symbols are words 
▪ But the hidden states are part-of-speech tags 

▪ So we need an extension! 
▪ A Hidden Markov Model is an extension of a Markov 

chain in which the input symbols are not the same as 
the states. 

▪ This means we don’t know which state we are in.



▪ States Q = q1, q2…qN;   

▪ Observations O= o1, o2…oN;   
▪ Each observation is a symbol from a vocabulary V = {v1,v2,…vV} 

▪ Transition probabilities 
▪ Transition probability matrix A = {aij} 

▪ Observation likelihoods 
▪ Output probability matrix B={bi(k)} 

▪ Special initial probability vector π

41

€ 

π i = P(q1 = i)    1≤ i ≤ N

€ 

aij = P(qt = j |qt−1 = i)   1≤ i, j ≤ N

€ 

bi(k) = P(Xt = ok |qt = i)   

Hidden Markov Models
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Eisner Task

▪ Given 
▪ Ice Cream Observation Sequence: 

1,2,3,2,2,2,3… 

▪ Produce: 
▪ Weather Sequence: H,C,H,H,H,C…
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HMM for Ice Cream
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Transition Probabilities
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Observation Likelihoods
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Decoding

▪ Ok, now we have a complete model that can give 
us what we need. Recall that we need to get 

▪ We could just enumerate all paths given the 
input and use the model to assign probabilities to 
each. 
▪ Not a good idea. 
▪ Luckily dynamic programming helps us here
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The Viterbi Algorithm
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Viterbi Example
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Viterbi Summary

▪ Create an array 
▪ With columns corresponding to inputs 
▪ Rows corresponding to possible states 

▪ Sweep through the array in one pass filling 
the columns left to right using our 
transition probs and observations probs 

▪ Dynamic programming key is that we need 
only store the MAX prob path to each cell, 
(not all paths).
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Evaluation

▪ So once you have you POS tagger running 
how do you evaluate it? 
▪ Overall error rate with respect to a gold-

standard test set. 
▪ Error rates on particular tags 
▪ Error rates on particular words 
▪ Tag confusions...
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Evaluation

▪ The result is compared with a manually 
coded “Gold Standard” 
▪ Typically accuracy reaches 96-97% 
▪ This may be compared with result for a 

baseline tagger (one that uses no context). 

▪ Important: 100% is impossible even for 
human annotators.
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Summary

▪ Parts of speech 
▪ Tagsets 
▪ Part of speech tagging 
▪ HMM Tagging 
▪Markov Chains 
▪Hidden Markov Models


