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Topic	modeling	-	Motivation



Discover	topics	from	a	corpus	  



Model	connections	between	topics	 



Model	the	evolution	of	topics	over	time	(or	other	relevant	variable)	  



Image	annotation



Extensions*

• Malleable:		Can	be	quickly	extended	for	data	
with	tags	(side	information),	class	label,	etc	

• The	(approximate)	inference	methods	can	be	
readily	translated	in	many	cases		

• Most	datasets	can	be	converted	to	‘bag-of-
words’	format	using	a	codebook	representation	
and	LDA	style	models	can	be	readily	applied	(can	
work	with	continuous	observations	too)

*YMMV



Connection	to	ML	research



Intuition	behind	LDA



Generative	model



The	posterior	distribution



Previously

• Supervised text categorization through Naïve Bayes 
• Generative model: first generate a document category, 

then words in the document (unigram model) 

• Inference: obtain posterior over document categories 
using Bayes rule (argmax to choose the category)

Cat

w1 w2 w3 w4 w5 w6
…

€ 

P(Cat |w1...n ) =
P(w1...n |Cat)P(Cat)

P(w1...n )



What we’re doing here

• Supervised categorization requires hand-labeling 
documents 

• This can be extremely time-consuming 
• Unlabeled documents are cheap 
• So we’d really like to do unsupervised text 

categorization 
• Now we’ll look at unsupervised learning within the 

Naïve Bayes model



Compact graphical model representations

• We’re going to lean heavily on graphical model 
representations here. 

• We’ll use a more compact notation: 

Cat

w1 w2 w3 w4 wn
…

Cat

w1
n

“generate a word from Cat n times”

a “plate”



Graphical	models	(Aside)



• Now suppose that Cat isn’t observed 
• We need to learn two distributions: 

• P(Cat) 
• P(w|Cat) 

• How do we do this? 
• We might use the method of maximum likelihood (MLE) 
• But it turns out that the likelihood surface is highly non-

convex and lots of information isn’t contained in a point 
estimate 

• Alternative: Bayesian methods

Cat

w1
n



Bayesian document categorization

Cat

w1 nD
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priors

P(w|Cat)

P(Cat)



Latent Dirichlet allocation 
(Blei, Ng, & Jordan, 2001; 2003)

Nd D

zi

wi

θ (d)

φ (j)

α

β

θ (d) ∼ Dirichlet(α)

zi ∼ Discrete(θ (d) )φ (j) ∼ Dirichlet(β)

wi ∼ Discrete(φ (zi) )

T

distribution over topics 
for each document

topic assignment  
for each word

distribution over words  
for each topic

word generated from  
assigned topic

Dirichlet priors

Main difference: one topic 
per word 



A generative model for documents

HEART  0.2  
LOVE   0.2 
SOUL   0.2 
TEARS  0.2 
JOY   0.2 
SCIENTIFIC         0.0 
KNOWLEDGE  0.0 
WORK   0.0 
RESEARCH  0.0 
MATHEMATICS 0.0 

HEART  0.0  
LOVE   0.0 
SOUL   0.0 
TEARS  0.0 
JOY   0.0  
SCIENTIFIC         0.2 
KNOWLEDGE  0.2 
WORK   0.2 
RESEARCH  0.2 
MATHEMATICS 0.2

topic 1 topic 2

w             P(w|Cat = 1) w             P(w|Cat = 2)



Choose mixture weights for each document, generate “bag of words”

{P(z = 1), P(z = 2)} 

{0, 1} 

{0.25, 0.75} 

{0.5, 0.5} 

{0.75, 0.25} 

{1, 0}

MATHEMATICS KNOWLEDGE RESEARCH WORK MATHEMATICS  
RESEARCH WORK SCIENTIFIC MATHEMATICS WORK 

SCIENTIFIC KNOWLEDGE MATHEMATICS SCIENTIFIC  
HEART LOVE TEARS KNOWLEDGE HEART 

MATHEMATICS HEART RESEARCH LOVE MATHEMATICS  
WORK TEARS SOUL KNOWLEDGE HEART

WORK JOY SOUL TEARS MATHEMATICS  
TEARS LOVE LOVE LOVE SOUL

TEARS LOVE JOY SOUL LOVE TEARS SOUL SOUL TEARS JOY



Dirichlet priors

• Multivariate equivalent of Beta distribution 

• Hyperparameters α determine form of the prior

€ 

p(θ |Cat) =
Γ(Tα)
Γ(α)T

θ j
α−1

j=1

T

∏



Dirichlet	Examples

Darker	implies	lower	magnitude	

\alpha	<	1	leads	to	sparser	topics



w
or
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documents

w
or

ds

topics

to
pi

cs

documents

P
(w

|z
)

P(z)

Matrix factorization interpretation

Maximum-likelihood estimation is finding 
the factorization that minimizes KL 

divergence

P(w)

(Hofmann, 1999)
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Interpretable topics

each column shows words from a single topic, ordered by P(w|z)
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Handling multiple senses

each column shows words from a single topic, ordered by P(w|z)



Natural statistics

Documents Semantic representation

MATHEMATICS KNOWLEDGE RESEARCH WORK MATHEMATICS  
RESEARCH WORK SCIENTIFIC MATHEMATICS WORK 
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Explore	and	browse	document	collections



Why	does	LDA	“work”	?



Inverting the generative model

• Maximum likelihood estimation (EM) 
• e.g. Hofmann (1999) 

• Deterministic approximate algorithms  
• variational EM; Blei, Ng & Jordan (2001; 2003) 
• expectation propagation; Minka & Lafferty (2002)  

• Markov chain Monte Carlo 
• full Gibbs sampler; Pritchard et al. (2000) 
• collapsed Gibbs sampler; Griffiths & Steyvers (2004)



The collapsed Gibbs sampler

• Using conjugacy of Dirichlet and multinomial 
distributions, integrate out continuous parameters 

• Defines a distribution on discrete ensembles z
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The collapsed Gibbs sampler

• Sample each zi conditioned on z-i 

• This is nicer than your average Gibbs sampler: 
• memory: counts can be cached in two sparse matrices 
• optimization: no special functions, simple arithmetic 
• the distributions on Φ and Θ are analytic given z and w, 

and can later be found for each sample
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Gibbs sampling in LDA
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Gibbs sampling in LDA
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Effects of hyperparameters 
• α and β control the relative sparsity of Φ and Θ

• smaller α, fewer topics per document 
• smaller β, fewer words per topic 

• Good assignments z compromise in sparsity

Nd D

zi

wi

θ (d)

φ (j)

α

β

θ (d) ∼ Dirichlet(α)

zi ∼ Discrete(θ (d) )φ (j) ∼ Dirichlet(β)

wi ∼ Discrete(φ (zi) )

T

distribution over topics 
for each document

topic assignment  
for each word

distribution over words  
for each topic

word generated from  
assigned topic

Dirichlet priors



Varying α  

decreasing α increases sparsity



Varying β

decreasing β increases 
sparsity ?



Number of words per topic

Topic
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Learning the number of topics

• Can use standard Bayes factor methods to 
evaluate models of different dimensionality 
• e.g. importance sampling via MCMC 

• Alternative: nonparametric Bayes 
• fixed number of topics per document, unbounded 

number of topics per corpus 
(Blei, Griffiths, Jordan, & Tenenbaum, 2004) 

• unbounded number of topics for both (the 
hierarchical Dirichlet process) 

(Teh, Jordan, Beal, & Blei, 2004)



Analysis of PNAS abstracts

• Test topic models with a real database of 
scientific papers from PNAS 

• All 28,154 abstracts from 1991-2001 
• All words occurring in at least five abstracts, 

not on “stop” list (20,551) 
• Total of 3,026,970 tokens in corpus

(Griffiths & Steyvers, 2004)
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Software

• MALLET	(java)	
• in	R:	topicmodels	and	lda	packages	
• lda	(python)	
• LDAvis	(R)	
• ...	(lots	more!)



Web demo

http://cpsievert.github.io/LDAvis/reviews/reviews.html

http://cpsievert.github.io/LDAvis/reviews/reviews.html

