
Introducing	Information	Retrieval		
and	Web	Search	

borrowing	from:	Pandu	Nayak

Information	Retrieval

• Information	Retrieval	(IR)	is	finding	material	
(usually	documents)	of	an	unstructured	nature	
(usually	text)	that	satisfies	an	information	need	
from	within	large	collections	(usually	stored	on	
computers).	

– These	days	we	frequently	think	first	of	web	search,	but	
there	are	many	other	cases:	

• E-mail	search	
• Searching	your	laptop	
• Corporate	knowledge	bases	
• Legal	information	retrieval

2

Basic	assumptions	of	Information	Retrieval

• Collection:	A	set	of	documents	
– Assume	it	is	a	static	collection	for	the	moment	

• Goal:	Retrieve	documents	with	information	
that	is	relevant	to	the	user’s	information	need	
and	helps	the	user	complete	a	task

3

Sec. 1.1

how	trap	mice	alive

The	classic	search	model

Collection

User task

 Info need 

Query  

Results  

Search
engine 

Query  
refinement

Get rid of mice in a
politically correct way

Info about removing mice
without killing them

Misconception?

Misformulation?

Search

How	good	are	the	retrieved	docs?

▪ Precision	:	Fraction	of	retrieved	docs	that	are	
relevant	to	the	user’s	information	need	

▪ Recall	:	Fraction	of	relevant	docs	in	collection	
that	are	retrieved	

▪ More	precise	definitions	and	measurements	to	
follow	later

5

Sec. 1.1

Term-document	incidence	matrices

Unstructured	data	in	1620

• Which	plays	of	Shakespeare	contain	the	words	
Brutus	AND	Caesar		but	NOT	Calpurnia?	

• One	could	grep	all	of	Shakespeare’s	plays	for	
Brutus	and	Caesar,	then	strip	out	lines	containing	
Calpurnia?	

• Why	is	that	not	the	answer?	
– Slow	(for	large	corpora)	
– NOT	Calpurnia	is	non-trivial	
– Other	operations	(e.g.,	find	the	word	Romans	near	
countrymen)	not	feasible	

– Ranked	retrieval	(best	documents	to	return)	
• Later	lectures

7

Sec. 1.1

Term-document	incidence	matrices

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

1 if play contains
word, 0 otherwise

Brutus AND Caesar BUT NOT
Calpurnia

Sec. 1.1

Incidence	vectors

• So	we	have	a	0/1	vector	for	each	term.	
• To	answer	query:	take	the	vectors	for	Brutus,	
Caesar	and	Calpurnia	(complemented)	➔
bitwise	AND.	
– 110100	AND	
– 110111	AND	
– 101111	=		
– 100100

9

Sec. 1.1

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

Answers	to	query

• Antony and Cleopatra,	Act III, Scene ii
Agrippa [Aside to DOMITIUS ENOBARBUS]: Why, Enobarbus,
 When Antony found Julius Caesar dead,
 He cried almost to roaring; and he wept
 When at Philippi he found Brutus slain.

• Hamlet, Act III, Scene ii
Lord Polonius: I did enact Julius Caesar I was killed i’ the
 Capitol; Brutus killed me.

10

Sec. 1.1

Bigger	collections

• Consider	N	=	1	million	documents,	each	with	
about	1000	words.	

• Avg	6	bytes/word	including	spaces/
punctuation		
– 6GB	of	data	in	the	documents.	

• Say	there	are	M	=	500K	distinct	terms	among	
these.

11

Sec. 1.1

Can’t	build	the	matrix

• 500K	x	1M	matrix	has	half-a-trillion	0’s	and	1’s.	

• But	it	has	no	more	than	one	billion	1’s.	
– matrix	is	extremely	sparse.	

• What’s	a	better	representation?	
– We	only	record	the	1	positions.

12

Why?

Sec. 1.1

The	Inverted	Index	
The	key	data	structure	underlying	

modern	IR

Inverted	index
• For	each	term	t,	we	must	store	a	list	of	all	
documents	that	contain	t.	
– Identify	each	doc	by	a	docID,	a	document	serial	
number	

• Can	we	used	fixed-size	arrays	for	this?

14

What	happens	if	the	word	Caesar	
is	added	to	document	14?	

Sec. 1.2

Brutus

Calpurnia

Caesar 1 2 4 5 6 16 57 132

1 2 4 11 31 45173

2 31

174

54101

Inverted	index
• We	need	variable-size	postings	lists	

– On	disk,	a	continuous	run	of	postings	is	normal	and	
best	

– In	memory,	can	use	linked	lists	or	variable	length	
arrays	

• Some	tradeoffs	in	size/ease	of	insertion

15

Dictionary Postings
Sorted by docID (more later on why).

Posting

Sec. 1.2

Brutus

Calpurnia

Caesar 1 2 4 5 6 16 57 132

1 2 4 11 31 45173

2 31

174

54101

Tokenizer

Token stream Friends Romans Countrymen

Inverted	index	construction

Linguistic	modules

Modified tokens friend roman countryman

Indexer

Inverted index

friend

roman

countryman

2 4

2

13 16

1

Documents to
be indexed

Friends, Romans, countrymen.

Sec. 1.2

Initial	stages	of	text	processing

• Tokenization	
– Cut	character	sequence	into	word	tokens	

• Deal	with	“John’s”,	a	state-of-the-art	solution	

• Normalization	
– Map	text	and	query	term	to	same	form	

• You	want	U.S.A.	and	USA	to	match	

• Stemming	
– We	may	wish	different	forms	of	a	root	to	match	

• authorize,	authorization	

• Stop	words	
– We	may	omit	very	common	words	(or	not)	

• the,	a,	to,	of

Indexer	steps:	Token	sequence

• Sequence	of	(Modified	token,	Document	ID)	pairs.

I did enact Julius
Caesar I was killed

i’ the Capitol;
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble

Brutus hath told you
Caesar was ambitious

Doc 2

Sec. 1.2

Indexer	steps:	Sort

• Sort	by	terms	
– And	then	docID	

Core	indexing	step

Sec. 1.2

Indexer	steps:	Dictionary	&	Postings

• Multiple	term	entries	
in	a	single	document	
are	merged.	

• Split	into	Dictionary	
and	Postings	

• Doc.	frequency	
information	is	added.

Why	frequency?	
Will	discuss	later.

Sec. 1.2

Where	do	we	pay	in	storage?

21Pointers

Terms	and	
counts

IR	system	
implementation	
•How	do	we	index	
efficiently?	
•How	much	storage	
do	we	need?

Sec. 1.2

Lists	of	
docIDs

Query	processing	with	an	inverted	index

The	index	we	just	built

• How	do	we	process	a	query?	
– Later	-	what	kinds	of	queries	can	we	process?

23

Our	focus

Sec. 1.3

Query	processing:	AND

• Consider	processing	the	query:	
Brutus	AND	Caesar	
– Locate	Brutus	in	the	Dictionary;	

• Retrieve	its	postings.	
– Locate	Caesar	in	the	Dictionary;	

• Retrieve	its	postings.	
– “Merge”	the	two	postings	(intersect	the	document	
sets):

24

128
34

2 4 8 16 32 64
1 2 3 5 8 13 21

Brutus
Caesar

Sec. 1.3

The	merge

• Walk	through	the	two	postings	simultaneously,	
in	time	linear	in	the	total	number	of	postings	
entries

25

34
1282 4 8 16 32 64

1 2 3 5 8 13 21
Brutus
Caesar

If the list lengths are x and y, the merge takes O(x+y)
operations.
Crucial: postings sorted by docID.

Sec. 1.3

Intersecting	two	postings	lists 
(a	“merge”	algorithm)

26

The	Boolean	Retrieval	Model	
&	Extended	Boolean	Models

Boolean	queries:	Exact	match

• The	Boolean	retrieval	model	is	being	able	to	ask	a	
query	that	is	a	Boolean	expression:	
– Boolean	Queries	are	queries	using	AND,	OR	and	NOT	to	
join	query	terms	

• Views	each	document	as	a	set	of	words	
• Is	precise:	document	matches	condition	or	not.	

– Perhaps	the	simplest	model	to	build	an	IR	system	on	

• Primary	commercial	retrieval	tool	for	3	decades.		
• Many	search	systems	you	still	use	are	Boolean:	

– Email,	library	catalog,	Mac	OS	X	Spotlight
28

Sec. 1.3

Example:	WestLaw			http://www.westlaw.com/

• Largest commercial (paying subscribers)
legal search service (started 1975; ranking
added 1992; new federated search added
2010)

• Tens of terabytes of data; ~700,000 users
• Majority of users still use boolean queries
• Example query:

– What is the statute of limitations in cases
involving the federal tort claims act?

– LIMIT! /3 STATUTE ACTION /S FEDERAL /2
TORT /3 CLAIM

• /3 = within 3 words, /S = in same sentence

29

Sec. 1.4

Example:	WestLaw			http://www.westlaw.com/

• Another	example	query:	
– Requirements	for	disabled	people	to	be	able	to	access	
a	workplace	

– disabl!	/p	access!	/s	work-site	work-place	
(employment	/3	place)	

• Note	that	SPACE	is	disjunction,	not	conjunction!	
• Long,	precise	queries;	proximity	operators;	
incrementally	developed;	not	like	web	search	

• Many	professional	searchers	still	like	Boolean	
search	
– You	know	exactly	what	you	are	getting	

• But	that	doesn’t	mean	it	actually	works	better….

Sec. 1.4

Boolean	queries:	  
More	general	merges

• Exercise:	Adapt	the	merge	for	the	queries:	
	 Brutus	AND	NOT	Caesar	
	 Brutus	OR	NOT	Caesar	

• Can	we	still	run	through	the	merge	in	time	O(x
+y)?			What	can	we	achieve?

31

Sec. 1.3

Query	optimization

• What	is	the	best	order	for	query	processing?	
• Consider	a	query	that	is	an	AND	of	n	terms.	
• For	each	of	the	n	terms,	get	its	postings,	
then	AND	them	together.

Brutus

Caesar
Calpurnia

1 2 3 5 8 16 21 34

2 4 8 16 32 64128

13 16

Query:	Brutus	AND	Calpurnia	AND	Caesar
32

Sec. 1.3

Query	optimization	example

• Process	in	order	of	increasing	freq:	
– start	with	smallest	set,	then	keep	cutting	further.

33

This	is	why	we	kept	
document	freq.	in	dictionary

Execute	the	query	as	(Calpurnia	AND	Brutus)	AND	Caesar.

Sec. 1.3

Brutus

Caesar
Calpurnia

1 2 3 5 8 16 21 34

2 4 8 16 32 64128

13 16

More	general	optimization

• e.g.,	(madding	OR	crowd)	AND	(ignoble	OR	strife)	
• Get	doc.	freq.’s	for	all	terms.	
• Estimate	the	size	of	each	OR	by	the	sum	of	its	doc.	
freq.’s	(conservative).	

• Process	in	increasing	order	of	OR	sizes.

34

Sec. 1.3

Exercise

• Recommend	a	query	
processing	order	for	

• Which	two	terms	should	we	
process	first?

 Term Freq
 eyes 213312
 kaleidoscope 87009
 marmalade 107913
 skies 271658
 tangerine 46653
 trees 316812

35

(tangerine OR trees) AND
(marmalade OR skies) AND
(kaleidoscope OR eyes)

Phrase	queries	and	positional	indexes

Phrase	queries

• We	want	to	be	able	to	answer	queries	such	as	
“stanford	university”	–	as	a	phrase	

• Thus	the	sentence	“I	went	to	university	at	
Stanford”	is	not	a	match.		
– The	concept	of	phrase	queries	has	proven	easily	
understood	by	users;	one	of	the	few	“advanced	
search”	ideas	that	works	

– Many	more	queries	are	implicit	phrase	queries	
• For	this,	it	no	longer	suffices	to	store	only	
			<term	:	docs>	entries

Sec. 2.4

A	first	attempt:	Biword	indexes

• Index	every	consecutive	pair	of	terms	in	the	text	
as	a	phrase	

• For	example	the	text	“Friends,	Romans,	
Countrymen”	would	generate	the	biwords	
– friends	romans	
– romans	countrymen	

• Each	of	these	biwords	is	now	a	dictionary	term	
• Two-word	phrase	query-processing	is	now	
immediate.

Sec. 2.4.1

Longer	phrase	queries

• Longer	phrases	can	be	processed	by	breaking	
them	down	

• stanford	university	palo	alto	can	be	broken	into	
the	Boolean	query	on	biwords:	

stanford	university	AND	university	palo	AND	palo	
alto	

Without	the	docs,	we	cannot	verify	that	the	docs	
matching	the	above	Boolean	query	do	contain	the	
phrase.

Can	have	false	positives!

Sec. 2.4.1

Issues	for	biword	indexes

• False	positives,	as	noted	before	
• Index	blowup	due	to	bigger	dictionary	

– Infeasible	for	more	than	biwords,	big	even	for	
them	

• Biword	indexes	are	not	the	standard	solution	
(for	all	biwords)	but	can	be	part	of	a	compound	
strategy

Sec. 2.4.1

Solution	2:	Positional	indexes

• In	the	postings,	store,	for	each	term	the	
position(s)	in	which	tokens	of	it	appear:	

<term,	number	of	docs	containing	term;	
doc1:	position1,	position2	…	;	
doc2:	position1,	position2	…	;	
etc.>

Sec. 2.4.2

Positional	index	example

• For	phrase	queries,	we	use	a	merge	
algorithm	recursively	at	the	document	level	

• But	we	now	need	to	deal	with	more	than	
just	equality

<be: 993427;
1: 7, 18, 33, 72, 86, 231;
2: 3, 149;
4: 17, 191, 291, 430, 434;
5: 363, 367, …>

Which of docs 1,2,4,5
could contain “to be

or not to be”?

Sec. 2.4.2

Processing	a	phrase	query

• Extract	inverted	index	entries	for	each	distinct	
term:	to,	be,	or,	not.	

• Merge	their	doc:position	lists	to	enumerate	all	
positions	with	“to	be	or	not	to	be”.	
– to:		

• 2:1,17,74,222,551;	4:8,16,190,429,433;	7:13,23,191;	...	

– be:			
• 1:17,19;	4:17,191,291,430,434;	5:14,19,101;	...	

• Same	general	method	for	proximity	searches

Sec. 2.4.2

Positional	index	size

• A	positional	index	expands	postings	storage	
substantially	
– Even	though	indices	can	be	compressed	

• Nevertheless,	a	positional	index	is	now	
standardly	used	because	of	the	power	and	
usefulness	of	phrase	and	proximity	queries	…	
whether	used	explicitly	or	implicitly	in	a	
ranking	retrieval	system.

Sec. 2.4.2

Positional	index	size

• Need	an	entry	for	each	occurrence,	not	just	
once	per	document	

• Index	size	depends	on	average	document	size	
– Average	web	page	has	<1000	terms	
– SEC	filings,	books,	even	some	epic	poems	…	easily	
100,000	terms	

• Consider	a	term	with	frequency	0.1%

Why?

1001100,000

111000

Positional	postingsPostingsDocument	size

Sec. 2.4.2

Rules	of	thumb

• A	positional	index	is	2–4	as	large	as	a	non-
positional	index	

• Positional	index	size	35–50%	of	volume	of	
original	text	

– Caveat:	all	of	this	holds	for	“English-like”	languages

Sec. 2.4.2

Combination	schemes

• These	two	approaches	can	be	profitably	combined	
– For	particular	phrases	(“Michael	Jackson”,	“Britney	
Spears”)	it	is	inefficient	to	keep	on	merging	positional	
postings	lists	

• Even	more	so	for	phrases	like	“The	Who”	

• Williams	et	al.	(2004)	evaluate	a	more	
sophisticated	mixed	indexing	scheme	
– A	typical	web	query	mixture	was	executed	in	¼	of	the	
time	of	using	just	a	positional	index	

– It	required	26%	more	space	than	having	a	positional	
index	alone

Sec. 2.4.3

Structured	vs.	Unstructured	Data

IR	vs.	databases: 
Structured	vs	unstructured	data

• Structured	data	tends	to	refer	to	information	in	
“tables”

49

Employee Manager Salary

Smith Jones 50000

Chang Smith 60000

50000Ivy Smith

Typically allows numerical range and exact match
(for text) queries, e.g.,
 Salary < 60000 AND Manager = Smith.

Unstructured	data

• Typically	refers	to	free	text	
• Allows	

– Keyword	queries	including	operators	
– More	sophisticated	“concept”	queries	e.g.,	

• find	all	web	pages	dealing	with	drug	abuse	

• Classic	model	for	searching	text	documents

50

Semi-structured	data

• In	fact	almost	no	data	is	“unstructured”	
• E.g.,	this	slide	has	distinctly	identified	zones	such	
as	the	Title	and	Bullets	

• …	to	say	nothing	of	linguistic	structure	

• Facilitates	“semi-structured”	search	such	as	
– Title	contains	data	AND	Bullets	contain	search	

• Or	even	
– Title	is	about	Object	Oriented	Programming	AND	
Author		something	like	stro*rup		

– where	*	is	the	wild-card	operator

51

