
Text Analytics

Lecture 2b: 
morphology & finite-state transducers

Klinton Bicknell

(borrowing from: Dan Jurafsky and Jim Martin)

2

Words
• Finite-state methods are particularly useful in dealing

with a lexicon
• Many devices, most with limited memory, need access to

large lists of words
• And they need to perform fairly sophisticated tasks with

those lists
• So we’ll first talk about some facts about words and then

come back to computational methods

3

English Morphology

• Morphology is the study of the ways that
words are built up from smaller meaningful
units called morphemes

• We can usefully divide morphemes into
two classes
⬥Stems: The core meaning-bearing units
⬥Affixes: Bits and pieces that adhere to stems

to change their meanings and grammatical
functions

4

English Morphology

• We can further divide morphology up into
two broad classes
⬥Inflectional
⬥Derivational

5

Word Classes
• By word class, we have in mind familiar notions like noun

and verb
• We’ll go into the gory details in Chapter 5
• Right now we’re concerned with word classes because

the way that stems and affixes combine is based to a
large degree on the word class of the stem

6

Inflectional Morphology

• Inflectional morphology concerns the
combination of stems and affixes where the
resulting word:
⬥Has the same word class as the original
⬥Serves a grammatical/semantic purpose that is
▪ Different from the original
▪ But is nevertheless transparently related to the

original

7

Nouns and Verbs in English

• Nouns are simple
⬥Markers for plural and possessive

• Verbs are only slightly more complex
⬥Markers appropriate to the tense of the verb

8

Regulars and Irregulars

• It is a little complicated by the fact that
some words misbehave (refuse to follow
the rules)
⬥Mouse/mice, goose/geese, ox/oxen
⬥Go/went, fly/flew

• The terms regular and irregular are used to
refer to words that follow the rules and
those that don’t

9

Regular and Irregular Verbs

• Regulars…
⬥Walk, walks, walking, walked, walked

• Irregulars
⬥Eat, eats, eating, ate, eaten
⬥Catch, catches, catching, caught, caught
⬥Cut, cuts, cutting, cut, cut

10

Inflectional Morphology

• So inflectional morphology in English is
fairly straightforward

• But is complicated by the fact that are
irregularities

11

Derivational Morphology

• Derivational morphology is the messy stuff
that no one ever taught you.
⬥Quasi-systematicity
⬥Irregular meaning change
⬥Changes of word class

12

Derivational Examples

• Verbs and Adjectives to Nouns

-ation computerize computerization

-ee appoint appointee

-er kill killer

-ness fuzzy fuzziness

13

Derivational Examples
• Nouns and Verbs to Adjectives

-al computation computational

-able embrace embraceable

-less clue clueless

14

Example: Compute
• Many paths are possible…
• Start with compute

⬥ Computer -> computerize -> computerization
⬥ Computer -> computerize -> computerizable

• But not all paths/operations are equally good (allowable?)
⬥ Clue

▪ Clue -> *clueable

15

Morphology and FSAs

• We’d like to use the machinery provided by
FSAs to capture these facts about
morphology
⬥Accept strings that are in the language
⬥Reject strings that are not
⬥And do so in a way that doesn’t require us to

in effect list all the words in the language

16

Start Simple

• Regular singular nouns are ok
• Regular plural nouns have an -s on the end
• Irregulars are ok as is

17

Simple Rules

18

Now Plug in the Words

19

Derivational Rules

If everything is an accept state how
do things ever get rejected?

20

Parsing/Generation  
vs. Recognition

• We can now run strings through these machines
to recognize strings in the language

• But recognition is usually not quite what we need
⬥ Often if we find some string in the language we might

like to assign a structure to it (parsing)
⬥ Or we might have some structure and we want to

produce a surface form for it (production/generation)
• Example

⬥ From “cats” to “cat +N +PL”

21

Finite State Transducers

• The simple story
⬥Add another tape
⬥Add extra symbols to the transitions

⬥On one tape we read “cats”, on the other we
write “cat +N +PL”

22

FSTs

23

Applications

• The kind of parsing we’re talking about is
normally called morphological analysis

• It can either be
• An important stand-alone component of many

applications (spelling correction, information
retrieval)

• Or simply a link in a chain of further linguistic
analysis

24

Transitions

• c:c means read a c on one tape and write a c on the other
• +N:ε means read a +N symbol on one tape and write nothing on the

other
• +PL:s means read +PL and write an s

c:c a:a t:t +N: ε +PL:s

25

Typical Uses

• Typically, we’ll read from one tape using
the first symbol on the machine transitions
(just as in a simple FSA).

• And we’ll write to the second tape using
the other symbols on the transitions.

26

Ambiguity

• Recall that in non-deterministic recognition
multiple paths through a machine may lead
to an accept state.
• Didn’t matter which path was actually traversed

• In FSTs the path to an accept state does
matter since different paths represent
different parses and different outputs will
result

27

Ambiguity

• What’s the right parse (segmentation) for
• Unionizable
• Union-ize-able
• Un-ion-ize-able

• Each represents a valid path through the
derivational morphology machine.

28

Ambiguity

• There are a number of ways to deal with
this problem
• Simply take the first output found
• Find all the possible outputs (all paths) and

return them all (without choosing)
• Bias the search so that only one or a few likely

paths are explored

29

The Gory Details

• Of course, its not as easy as
• “cat +N +PL” <-> “cats”

• As we saw earlier there are geese, mice and
oxen

• But there are also a whole host of spelling/
pronunciation changes that go along with
inflectional changes
• Cats vs Dogs
• Fox and Foxes

30

Multi-Tape Machines

• To deal with these complications, we will
add more tapes and use the output of one
tape machine as the input to the next

• So to handle irregular spelling changes
we’ll add intermediate tapes with
intermediate symbols

31

Multi-Level Tape Machines

• We use one machine to transduce between the
lexical and the intermediate level, and another to
handle the spelling changes to the surface tape

32

Lexical to Intermediate Level

33

Intermediate to Surface

• The add an “e” rule as in fox^s# <-> foxes#

34

Foxes

35

Note

• A key feature of this machine is that it
doesn’t do anything to inputs to which it
doesn’t apply.

• Meaning that they are written out
unchanged to the output tape.

36

Overall Scheme

• We now have one FST that has explicit
information about the lexicon (actual
words, their spelling, facts about word
classes and regularity).
• Lexical level to intermediate forms

• We have a larger set of machines that
capture orthographic/spelling rules.
• Intermediate forms to surface forms

37

Overall Scheme

38

Cascades

• This is an architecture that we’ll see again
and again
• Overall processing is divided up into distinct

rewrite steps
• The output of one layer serves as the input to

the next
• The intermediate tapes may or may not wind

up being useful in their own right

39

Overall Plan

40

Final Scheme

41

Composition

1. Create a set of new states that
correspond to each pair of states from the
original machines (New states are called
(x,y), where x is a state from M1, and y is
a state from M2)

2. Create a new FST transition table for the
new machine according to the following
intuition…

42

Composition

• There should be a transition between two
states in the new machine if it’s the case
that the output for a transition from a state
from M1, is the same as the input to a
transition from M2 or…

43

Composition

• δ3((xa,ya), i:o) = (xb,yb) iff
⬥There exists c such that
⬥δ1(xa, i:c) = xb AND

⬥δ2(ya, c:o) = yb

CoreNLP:	
 docs

• java:	
 http://nlp.stanford.edu/software/
corenlp.shtml	

• python	
 wrappers	

• https://github.com/brendano/

stanford_corenlp_pywrapper	

• others	
 listed	
 at	
 bottom	
 of	
 corenlp's	
 java	
 page	

• tokenizer:	
 http://nlp.stanford.edu/software/
tokenizer.shtml

http://nlp.stanford.edu/software/corenlp.shtml
https://github.com/brendano/stanford_corenlp_pywrapper
http://nlp.stanford.edu/software/tokenizer.shtml

