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Words
• Finite-state methods are particularly useful in dealing 

with a lexicon 
• Many devices, most with limited memory, need access to 

large lists of words 
• And they need to perform fairly sophisticated tasks with 

those lists 
• So we’ll first talk about some facts about words and then 

come back to computational methods
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English Morphology

• Morphology is the study of the ways that 
words are built up from smaller meaningful 
units called morphemes 

• We can usefully divide morphemes into 
two classes 
⬥Stems: The core meaning-bearing units 
⬥Affixes: Bits and pieces that adhere to stems 

to change their meanings and grammatical 
functions
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English Morphology

• We can further divide morphology up into 
two broad classes 
⬥Inflectional 
⬥Derivational
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Word Classes
• By word class, we have in mind familiar notions like noun 

and verb 
• We’ll go into the gory details in Chapter 5 
• Right now we’re concerned with word classes because 

the way that stems and affixes combine is based to a 
large degree on the word class of the stem
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Inflectional Morphology

• Inflectional morphology concerns the 
combination of stems and affixes where the 
resulting word: 
⬥Has the same word class as the original 
⬥Serves a grammatical/semantic purpose that is  
▪ Different from the original 
▪ But is nevertheless transparently related to the 

original
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Nouns and Verbs in English

• Nouns are simple 
⬥Markers for plural and possessive 

• Verbs are only slightly more complex 
⬥Markers appropriate to the tense of the verb
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Regulars and Irregulars

• It is a little complicated by the fact that 
some words misbehave (refuse to follow 
the rules) 
⬥Mouse/mice, goose/geese, ox/oxen 
⬥Go/went, fly/flew 

• The terms regular and irregular are used to 
refer to words that follow the rules and 
those that don’t
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Regular and Irregular Verbs

• Regulars… 
⬥Walk, walks, walking, walked, walked 

• Irregulars 
⬥Eat, eats, eating, ate, eaten 
⬥Catch, catches, catching, caught, caught 
⬥Cut, cuts, cutting, cut, cut
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Inflectional Morphology

• So inflectional morphology in English is 
fairly straightforward 

• But is complicated by the fact that are 
irregularities
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Derivational Morphology

• Derivational morphology is the messy stuff 
that no one ever taught you. 
⬥Quasi-systematicity 
⬥Irregular meaning change 
⬥Changes of word class
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Derivational Examples

• Verbs and Adjectives to Nouns

-ation computerize computerization

-ee appoint appointee

-er kill killer

-ness fuzzy fuzziness
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Derivational Examples
• Nouns and Verbs to Adjectives

-al computation computational

-able embrace embraceable

-less clue clueless
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Example: Compute
• Many paths are possible… 
• Start with compute 

⬥ Computer -> computerize -> computerization 
⬥ Computer -> computerize -> computerizable 

• But not all paths/operations are equally good (allowable?) 
⬥ Clue  

▪ Clue -> *clueable



15

Morphology and FSAs

• We’d like to use the machinery provided by 
FSAs to capture these facts about 
morphology 
⬥Accept strings that are in the language 
⬥Reject strings that are not 
⬥And do so in a way that doesn’t require us to 

in effect list all the words in the language
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Start Simple

• Regular singular nouns are ok 
• Regular plural nouns have an -s on the end 
• Irregulars are ok as is
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Simple Rules
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Now Plug in the Words
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Derivational Rules

If everything is an accept state how 
do things ever get rejected?
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Parsing/Generation  
vs. Recognition

• We can now run strings through these machines 
to recognize strings in the language 

• But recognition is usually not quite what we need  
⬥ Often if we find some string in the language we might 

like to assign a  structure to it (parsing) 
⬥ Or we might have some structure and we want to 

produce a surface form for it (production/generation) 
• Example 

⬥ From “cats” to “cat +N +PL”
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Finite State Transducers

• The simple story 
⬥Add another tape 
⬥Add extra symbols to the transitions 

⬥On one tape we read “cats”, on the other we 
write “cat +N +PL”
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FSTs
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Applications

• The kind of parsing we’re talking about is 
normally called morphological analysis 

• It can either be  
• An important stand-alone component of many 

applications (spelling correction, information 
retrieval) 

• Or simply a link in a chain of further linguistic 
analysis
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Transitions

• c:c means read a c on one tape and write a c on the other 
• +N:ε means read a +N symbol on one tape and write nothing on the 

other 
• +PL:s means read +PL and write an s

c:c a:a t:t +N: ε +PL:s
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Typical Uses

• Typically, we’ll read from one tape using 
the first symbol on the machine transitions 
(just as in a simple FSA). 

• And we’ll write to the second tape using 
the other symbols on the transitions.
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Ambiguity

• Recall that in non-deterministic recognition 
multiple paths through a machine may lead 
to an accept state. 
• Didn’t matter which path was actually traversed 

• In FSTs the path to an accept state does 
matter since different paths represent 
different parses and different outputs will 
result
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Ambiguity

• What’s the right parse (segmentation) for 
• Unionizable 
• Union-ize-able 
• Un-ion-ize-able 

• Each represents a valid path through the 
derivational morphology machine.
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Ambiguity

• There are a number of ways to deal with 
this problem 
• Simply take the first output found 
• Find all the possible outputs (all paths) and 

return them all (without choosing) 
• Bias the search so that only one or a few likely 

paths are explored
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The Gory Details

• Of course, its not as easy as  
• “cat +N +PL” <->  “cats” 

• As we saw earlier there are geese, mice and 
oxen 

• But there are also a whole host of spelling/
pronunciation changes that go along with 
inflectional changes 
• Cats vs Dogs 
• Fox and Foxes
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Multi-Tape Machines

• To deal with these complications, we will 
add more tapes and use the output of one 
tape machine as the input to the next 

• So to handle irregular spelling changes 
we’ll add intermediate tapes with 
intermediate symbols
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Multi-Level Tape Machines

• We use one machine to transduce between the 
lexical and the intermediate level, and another to 
handle the spelling changes to the surface tape 
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Lexical to Intermediate Level
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Intermediate to Surface

• The add an “e” rule as in fox^s# <-> foxes#
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Foxes
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Note

• A key feature of this machine is that it 
doesn’t do anything to inputs to which it 
doesn’t apply. 

• Meaning that they are written out 
unchanged to the output tape.
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Overall Scheme

• We now have one FST that has explicit 
information about the lexicon (actual 
words, their spelling, facts about word 
classes and regularity). 
• Lexical level to intermediate forms 

• We have a larger set of machines that 
capture orthographic/spelling rules. 
• Intermediate forms to surface forms 
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Overall Scheme
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Cascades

• This is an architecture that we’ll see again 
and again 
• Overall processing is divided up into distinct 

rewrite steps 
• The output of one layer serves as the input to 

the next 
• The intermediate tapes may or may not wind 

up being useful in their own right
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Overall Plan
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Final Scheme
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Composition

1. Create a set of new states that 
correspond to each pair of states from the 
original machines (New states are called 
(x,y), where x is a state from M1, and y is 
a state from M2) 

2. Create a new FST transition table for the 
new machine according to the following 
intuition…
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Composition

• There should be a transition between two 
states in the new machine if it’s the case 
that the output for a transition from a state 
from M1, is the same as the input to a 
transition from M2 or…
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Composition

• δ3((xa,ya), i:o) = (xb,yb) iff 
⬥There exists c such that 
⬥δ1(xa, i:c) = xb AND 

⬥δ2(ya, c:o) = yb



CoreNLP:	
  docs

• java:	
  http://nlp.stanford.edu/software/
corenlp.shtml	
  

• python	
  wrappers	
  
• https://github.com/brendano/

stanford_corenlp_pywrapper	
  
• others	
  listed	
  at	
  bottom	
  of	
  corenlp's	
  java	
  page	
  

• tokenizer:	
  http://nlp.stanford.edu/software/
tokenizer.shtml

http://nlp.stanford.edu/software/corenlp.shtml
https://github.com/brendano/stanford_corenlp_pywrapper
http://nlp.stanford.edu/software/tokenizer.shtml

