Text Analytics

Lecture 2b:
morphology & finite-state transducers

Klinton Bicknell

(borrowing from: Dan Jurafsky and Jim Martin)

UUOI‘HS

* Finite-state methods are particularly useful in dealing
with a lexicon

* Many devices, most with limited memory, need access to
large lists of words

* And they need to perform fairly sophisticated tasks with
those lists

* So we'll first talk about some facts about words and then
come back to computational methods

S
English Morphology

* Morphology is the study of the ways that
words are built up from smaller meaningful

units called morphemes

* We can usefully divide morphemes into
two classes
¢ Stems: The core meaning-bearing units

¢ Affixes: Bits and pieces that adhere to stems
to change their meanings and grammatical
functions

~ English Morphology

* We can further divide morphology up into
two broad classes
¢ Inflectional
¢ Derivational

or dSSES

* By word class, we have in mind familiar notions like noun
and verb
* We'll go into the gory details in Chapter 5

* Right now we're concerned with word classes because
the way that stems and affixes combine is based to a
large degree on the word class of the stem

" Inflectional Morphology

* Inflectional morphology concerns the
combination of stems and affixes where the
resulting word:

¢ Has the same word class as the original

¢ Serves a grammatical/semantic purpose that is
= Different from the original

= But is nevertheless transparently related to the
original

MOuns and Verbs in Englis

* Nouns are simple
¢ Markers for plural and possessive

* Verbs are only slightly more complex
¢ Markers appropriate to the tense of the verb

S
Regulars and Irregulars

It is a little complicated by the fact that
some words misbehave (refuse to follow
the rules)

¢ Mouse/mice, goose/geese, ox/oxen
¢ Go/went, fly/flew
* The terms regular and irregular are used to

refer to words that follow the rules and
those that don't

uiar

* Regulars...
¢®Walk, walks, walking, walked, walked

* Irregulars
¢ Eat, eats, eating, ate, eaten
¢ Catch, catches, catching, caught, caught
¢ Cut, cuts, cutting, cut, cut

" Inflectional Morphology

* So inflectional morphology in English is
fairly straightforward

* But is complicated by the fact that are
irregularities

merlva ional Morphology

 Derivational morphology is the messy stuff
that no one ever taught you.
¢ Quasi-systematicity
¢ Irregular meaning change
¢ Changes of word class

Berlvallonal !xamples

* Verbs and Adjectives to Nouns

-ation computerize computerization
-ee appoint appointee
-er kill Killer

-ness fuzzy fuzziness

12

riv

* Nouns and Verbs to Adjectives

-al computation computational
-able embrace embraceable
-less clue clueless

"~ Example: Compute

e Many paths are possible...

e Start with compute
4 Computer -> computerize -> computerization
¢ Computer -> computerize -> computerizable

* But not all paths/operations are equally good (allowable?)

¢ Clue
= Clue -> *clueable

MorpHology ana FSAs

* We'd like to use the machinery provided by
FSAs to capture these facts about
morphology
¢ Accept strings that are in the language
¢ Reject strings that are not

¢And do so in a way that doesn’t require us to
in effect list all the words in the language

18

W

* Regular singular nouns are ok
* Reqgular plural nouns have an -s on the end
 Irregulars are ok as is

W

reg-noun plural -s

Irreg-pl-noun

Irreg-sg-noun

-ation/N

Citw/N -er/N

!arsllng’!enera!llon o

vs. Recognition

* We can now run strings through these machines
to recognize strings in the language

* But recognition is usually not quite what we need

¢ Often if we find some string in the language we might
like to assign a structure to it (parsing)

¢ Or we might have some structure and we want to
produce a surface form for it (production/generation)

* Example
¢ From “cats” to “cat +N +PL”

20

* The simple story
¢ Add another tape
¢ Add extra symbols to the transitions

4 0n one tape we read “cats”, on the other we
write “cat +N +PL"”

Lexical § clal|t |+N|[+PI

Surface § clal|t]|s

xppllcatlons

* The kind of parsing we're talking about is
normally called morphological analysis

e It can either be

* An important stand-alone component of many
applications (spelling correction, information
retrieval)

* Or simply a link in a chain of further linguistic
analysis

29

N: € +PL:s

C:C means read a c on one tape and write a c on the other

+N:€ means read a +N symbol on one tape and write nothing on the
other

+PL:s means read +PL and write an s

Iyplcal USES

* Typically, we'll read from one tape using
the first symbol on the machine transitions
(just as in a simple FSA).

* And we’ll write to the second tape using
the other symbols on the transitions.

25

Am&gmty

» Recall that in non-deterministic recognition
multiple paths through a machine may lead
to an accept state.

* Didn't matter which path was actually traversed

* In FSTs the path to an accept state does
matter since different paths represent
different parses and different outputs will
result

26

W

* What's the right parse (segmentation) for
» Unionizable
* Union-ize-able
* Un-ion-ize-able

* Each represents a valid path through the
derivational morphology machine.

!mglgm!y

* There are a number of ways to deal with
this problem
+ Simply take the first output found

* Find all the possible outputs (all paths) and
return them all (without choosing)

* Bias the search so that only one or a few likely
paths are explored

28

me ory Details

* Of course, its not as easy as
* “cat +N +PL" <-> “cats”

* As we saw earlier there are geese, mice and
oxen

» But there are also a whole host of spelling/
pronunciation changes that go along with
inflectional changes

 (Cats vs Dogs
* Fox and Foxes

23

Multi-Tape Machines

* To deal with these complications, we will
add more tapes and use the output of one
tape machine as the input to the next

* So to handle irregular spelling changes
we’ll add intermediate tapes with
intermediate symbols

30

Multi-Level Tape Machines

Lexical }

Intermediate é

Surface §

0 | X [+N|+Pl :
0 Nls f
0 e|s

i

* We use one machine to transduce between the
lexical and the intermediate level, and another to
handle the spelling changes to the surface tape

N

Lexical to Intermediate Level

D@
f Ns#

@@ S
#

a

g o) o) S e +N +Sg
OO 00-0 0O, @
O—0O—0O0O—0O—*#
e e S e €

e The add an “e” rule as in fox\s# <-> foxes#

Lexicalé flo!l x [+N|+P] E

T @OQOOC

Intermediate é flo|lx|M|s|# f

Te-insert °> <0> <0 1X2X3>> <0

Surfacezwf"orx els g

*

* A key feature of this machine is that it
doesn’t do anything to inputs to which it
doesn’t apply.

* Meaning that they are written out
unchanged to the output tape.

35

S
Overall Scheme

* We now have one FST that has explicit
information about the lexicon (actual
words, their spelling, facts about word
classes and regularity).

* Lexical level to intermediate forms

* We have a larger set of machines that
capture orthographic/spelling rules.

* Intermediate forms to surface forms

36

é flo| x |[+N[+PL 5

T T
LEXICON-FST

4 L

§ flo|x|"|s|# f
T T

FS T1 orthc;gra:hic.rules FS Tn

I L

§ flojx|e|s f

!a scaaes

* This is an architecture that we'll see again
and again
 Overall processing is divided up into distinct
rewrite steps

* The output of one layer serves as the input to
the next

* The intermediate tapes may or may not wind
up being useful in their own right

38

é flo| x |[+N[+PL 5

T T
LEXICON-FST

4 L

§ flo|x|"|s|# f
T T

FS T1 orthc;gra:hic.rules FS Tn

I L

§ flojx|e|s f

mi

{

:

T T
LEXICON-FST LEXICON-FST
LEXICON-FST
§ P] :
T T FST,
FST, FST, } FST, (=FST,*FST,..~FSTy)
L ~ L L1

{

!

!om pOSII!IIOH

1. Create a set of new states that
correspond to each pair of states from the
original machines (New states are called
(X,¥), where x is a state from M1, and y is
a state from M2)

2. Create a new FST transition table for the
new machine according to the following
Intuition...

41

!om pOSII!IIOH

* There should be a transition between two
states in the new machine if it's the case
that the output for a transition from a state
from M1, is the same as the input to a
transition from M2 or...

42

W

° 63((XaIYa)I i:O) = (XbIYb) Iff
¢ There exists ¢ such that
¢0,(x,, i:c) = x, AND

#0,(Y,, C:0) =Y,

CoreNLP: docs
* java:

e python wrappers

e others listed at bottom of corenlp's java page
e tokenizer:

http://nlp.stanford.edu/software/corenlp.shtml
https://github.com/brendano/stanford_corenlp_pywrapper
http://nlp.stanford.edu/software/tokenizer.shtml

