Automatic Speech Recognition
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borrowing from
Daniel Jurafsky and James Martin
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= ASR Architecture
= The Noisy Channel Model

» Five easy pieces of an ASR system
1) Language Model
2) Lexicon/Pronunciation Model (HMM)
3) Feature Extraction
4) Acoustic Model
5) Decoder

= Training
= Evaluation



(= Phone detection)

= Given a 39-dimensional vector
corresponding to the observation of one
frame o,

= And given a phone g we want to detect
= Compute p(o;|q)

= Most popular method:
= GMM (Gaussian mixture models)

» Other methods
= Neural nets, CRFs, SVM, etc
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Problem: how to apply HMM model

to continuous observations?

= \We have assumed that the output alphabet
V has a finite number of symbols

» But spectral feature vectors are real-
valued!

= How to deal with real-valued features?
= Decoding: Given o,, how to compute P(o,|q)

= Learning: How to modify EM to deal with real-
valued features



" BetterthanvQ

= vector quantization is insufficient for real ASR

» Instead: Assume the possible values of the observation feature
vector o, are normally distributed.

= Represent the observation likelihood function b;(o,) as a Gaussian
with mean y; and variance ;2
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acoustic likelihood estimator

» Let's suppose our observation was a single
real-valued feature (instead of 39D vector)

= Then if we had learned a Gaussian over
the distribution of values of this feature

» We could compute the likelihood of any
given observation o, as follows:

bj(or) = : exz?( o ﬂ"))
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= A (single) Gaussian is characterized by a mean and a
variance

= Imagine that we had some training data in which
each state was labeled

= We could just compute the mean and variance from
the data:
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Iralnlng Unlvarla!e Eaussmns

= But we dont know which observation was produced
by which state!
= What we want: to assign each observation vector o,

to every possible state i, prorated by the probability
the the HMM was in state i at time t.

= The probability of being in state i at time t is E(i)!!
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» Instead of a single mean uw and variance o:

1 (-’
f(xlu,a)—a meXp( o )

» Vector of means u and covariance matrix X
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Gaussian Intuitions: off-diagonal

I 0 L 0.5 I 0.8
==loa 2= los T == los T

= As we increase the off-diagonal entries, more correlation between value of x and
value of y

Text and figures from Andrew Ng’s lecture notes for CS229 10



and diagonal
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= Decreasing non-diagonal entries (#1-2)
= Increasing variance of one dimension in diagonal (#3)
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Text and figures from Andrew Ng’s lecture notes for CS229 11



But: assume allagonal covarllance

» [.e., assume that the features in the feature vector
are uncorrelated

= This isn’t true for FFT features, but is true for MFCC
features, as we will see.

= Computation and storage much cheaper if diagonal
covariance.

= [.e. only diagonal entries are non-zero
= Diagonal contains the variance of each dimension o,

= So this means we consider the variance of each
acoustic feature (dimension) separately
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Blagonal covariance

= Diagonal contains the variance of each
dimension o;?

» S0 this means we consider the variance of
each acoustic feature (dimension) separately
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" Butwe're not there yet

» Single Gaussian may do a bad job of
modeling distribution in any dimension:

Bad Newg!!!

Al

» Solution: Mixtures of Gaussians

Figure from Chen, Picheney et al slides 14



= M mixtures of Gaussians: .
f(x ltu’]ka ]k) zcjkN(xﬂu’jkazjk)

k=
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k=1
» For diagonal covariance
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- GMMs

= Summary: each state has a likelihood

function parameterized by:
= M Mixture weights
= M Mean Vectors of dimensionality D

= Either
= M Covariance Matrices of DxD
= Or more likely
= M Diagonal Covariance Matrices of DxD
= which is equivalent to
= M Variance Vectors of dimensionality D
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Where we are

Given: A wave file
Goal: output a string of words

What we know: the acoustic model
= How to turn the wavefile into a sequence of acoustic feature
vectors, one every 10 ms
= If we had a complete phonetic labeling of the training set, we
know how to train a gaussian “phone detector” for each phone.
= We also know how to represent each word as a sequence of
phones

What we knew from Chapter 4: the language model

= Next:
= Seeing all this back in the context of HMMs
= Search: how to combine the language model and the acoustic
model to produce a sequence of words
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W =argmax P(O|W) P(W)
Wed

= In practice:

W = argmax P(O|W )P(W )EM>E
we?

W = argmax P(O|W )P(W FMSE wipy
We¥

W = aremaxlog P(O|W) + LMSF x logP(W) + N x log WIP
We¥?
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O=q1q2...9x

A= api1Qp2 ...4dn1 - -

B = bi(ot)

N

a set of states corresponding to subphones

a transition probability matrix A, each a;; rep-
resenting the probability for each subphone of
taking a self-loop or going to the next subphone.
Together, O and A implement a pronunciation
lexicon, an HMM state graph structure for each
word that the system is capable of recognizing.

A set of observation likelihoods:. also called

emission probabilities, each expressing the
probability of a cepstral feature vector (observa-
tion o;) being generated from subphone state 1.
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Lexicon

one wahn
two tuw
three thriy
four faor
five fayv
Six sihks
seven sehvaxn
eight eyt
nine nayn
zero  ziyrow
oh ow

Phone HMM
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speech

» The observation sequence O is a series of
MFCC vectors

= The hidden states W are the phones and
words

= For a given phone/word string W, our job is
to evaluate P(O|W)

» Intuition: how likely is the input to have
been generated by just that word string W
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all different paths!

» fayayayayvvyvy
» ffayayayayvvy

s ffffayayayayyv

» ffayayayayayayv

» ffayayayayayayayayv
s ffayvvvvvvy
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\Y% 0 0 |0.008]|0.0093| 0.0114 | 0.00703 | 0.00345 | 0.00306 | 0.00206 | 0.00117
AY 0 0.04 | 0.054| 0.0664 | 0.0355 0.016 | 0.00676 | 0.00208 | 0.000532 | 0.000109
F 0.8 | 0.32 | 0.112] 0.0224 | 0.00448 | 0.000896 | 0.000179 | 4.48e-05| 1.12e-05 | 2.8e-06
Time | 2 3 4 5 6 7 8 9 10
f 08|f 08(f 0.7|f 04|f 04|f 04|f 04|f 0.5|f 0.5|f 0.5
av0.1|av 0.1|ay 0.3|ay 08|ay 0.8|ay 0.8|ay 0.8{ay 0.6|ay 0.5|ay 0.4
B v 0.6|v 0.6|v 04|v 03|v 0.3|v 0.3|v 0.3|v 0.6|v 0.8|v 0.9
p 04|\p 04|p 02|p 0.d|p 0.1\p 0.1|p 0.1\p 0.1\p 0.3|p 0.3
iv 0.11iy 0.1|iy 03|iy 0.6{iv  0.6|iy 0.6|1y 0.6|1y 0.5y 0.5 1y 0.4

24



o
ay

5 8+.8%.5

=.32

.32*.5*.3

(.04*5*.4)

=.008 }

=.048 }

.32*5*.7%

=112 }

25



A\ 0 0 |0.008(0.0072] 0.00672| 0.00403 | 0.00188 | 0.00161 | 0.000667 | 0.000493
AY 0 0.04 | 0.048] 0.0448| 0.0269 | 0.0125 | 0.00538 | 0.00167 | 0.000428 | 8.78e-05
F 0.8 | 0.32 | 0.112] 0.0224 [ 0.00448 | 0.000896 | 0.000179 | 4.48e-05| 1.12e-05 | 2.8e-06
Time | 2 3 4 5 6 7 8 9 10
f 08|f 08|f 0.7\f 04|f 0.4|f 0.4\ f 04| f 0.5\f 0.5|f 0.5
ay 0.1lay 0.1|ay 0.3|ay 0.8|ay 0.8|ay 0.8| av 0.8[ay 0.6|ay 0.5|ay 0.4
B v 0.6|v 0.6|v 04|v 03|v 0.3|v 0.3|v 0.3|v 0.6|v 0.8|v 0.9
p 04|p 04|p 0.2|p 0.|p 0.1\p 0.1(p 0.1|p 0.1\p 0.3|p 0.3
iy 0.1y O.1(iy 0.3|iy 0.6]iy 0.6|iy 0.6y 0.6y 0.5y 0.5|1v 0.4
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p( one | one )

p( one | zero )

p( z
p( zero | two )
R CROR R ORI OROEOR TR TR

p( zero | zero )
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= How to evaluate the word string output by
a speech recognizer?

30



= Word Error Rate =
100 (Insertions+Substitutions + Deletions)

Total Word in Correct Transcript
Aligment example:
REF: portable ****  PHONE UPSTAIRS last night so
HYP: portable FORM OF STORES last night so
Eval I S S
WER = 100 (1+2+0)/6 = 50%
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etier metxrics an

= WER has been useful

= But should we be more concerned with meaning

(“semantic error rate”)?
= Good idea, but hard to agree on
= Has been applied in dialogue systems, where desired
semantic output is more clear
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" Summary: ASR Architecture

= Five easy pieces: ASR Noisy Channel

architecture

1) Feature Extraction:
39 "MFCC" features

2) Acoustic Model:
Gaussians for computing p(o|q)

3) Lexicon/Pronunciation Model
« HMM: what phones can follow each other

4) Language Model
e N-grams for computing p(w;|w._;)

5) Decoder
e Viterbi algorithm: dynamic programming for combining all
these to get word sequence from speech!
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—ummary

= ASR Architecture
= The Noisy Channel Model

» Five easy pieces of an ASR system
1) Language Model
2) Lexicon/Pronunciation Model (HMM)
3) Feature Extraction
4) Acoustic Model
5) Decoder

= Training
= Evaluation
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