Automatic Speech Recognition (II)

borrowing from Daniel Jurafsky and James Martin

Outline for ASR

- ASR Architecture
 - The Noisy Channel Model
- Five easy pieces of an ASR system
 1) Language Model
 2) Lexicon/Pronunciation Model (HMM)
 3) Feature Extraction
 4) Acoustic Model
 5) Decoder
- Training
- Evaluation

Acoustic Modeling (= Phone detection)

- Given a 39-dimensional vector corresponding to the observation of one frame o_i
- And given a phone q we want to detect
- Compute p(o_i|q)
- Most popular method:
 GMM (Gaussian mixture models)
- Other methods
 - Neural nets, CRFs, SVM, etc

Problem: how to apply HMM model to continuous observations?

- We have assumed that the output alphabet
 V has a finite number of symbols
- But spectral feature vectors are realvalued!
- How to deal with real-valued features?
 Decoding: Given o_t, how to compute P(o_t|q)
 - Learning: How to modify EM to deal with realvalued features

Better than VQ

- vector quantization is insufficient for real ASR
- Instead: Assume the possible values of the observation feature vector o_t are normally distributed.
- Represent the observation likelihood function $b_j(o_t)$ as a Gaussian with mean μ_j and variance σ_j^2

$$f(x \mid \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp(-\frac{(x-\mu)^2}{2\sigma^2})$$

Using a (univariate Gaussian) as an acoustic likelihood estimator

- Let's suppose our observation was a single real-valued feature (instead of 39D vector)
- Then if we had learned a Gaussian over the distribution of values of this feature
- We could compute the likelihood of any given observation o_t as follows:

$$b_j(o_t) = \frac{1}{\sqrt{2\pi\sigma_j^2}} exp\left(-\frac{(o_t - \mu_j)^2}{2\sigma_j^2}\right)$$

Training a Univariate Gaussian

- A (single) Gaussian is characterized by a mean and a variance
- Imagine that we had some training data in which each state was labeled
- We could just compute the mean and variance from the data:

$$\mu_i = \frac{1}{T} \sum_{t=1}^{T} o_t \quad s.t. \quad o_t \quad is \quad state \quad i$$

$$\sigma_i^2 = \frac{1}{T} \sum_{t=1}^T (o_t - \mu_i)^2 \quad s.t. \ o_t \quad is \quad state \quad i$$

Training Univariate Gaussians

- But we don't know which observation was produced by which state!
- What we want: to assign each observation vector o_t to every possible state i, prorated by the probability the the HMM was in state i at time t.
- The probability of being in state i at time t is $\xi_t(i)$!!

$$\overline{\mu}_{i} = \frac{\sum_{t=1}^{T} \xi_{t}(i)o_{t}}{\sum_{t=1}^{T} \xi_{t}(i)} \qquad \overline{\sigma}^{2}_{i} = \frac{\sum_{t=1}^{T} \xi_{t}(i)(o_{t} - \mu_{i})^{2}}{\sum_{t=1}^{T} \xi_{t}(i)}$$

Multivariate Gaussians

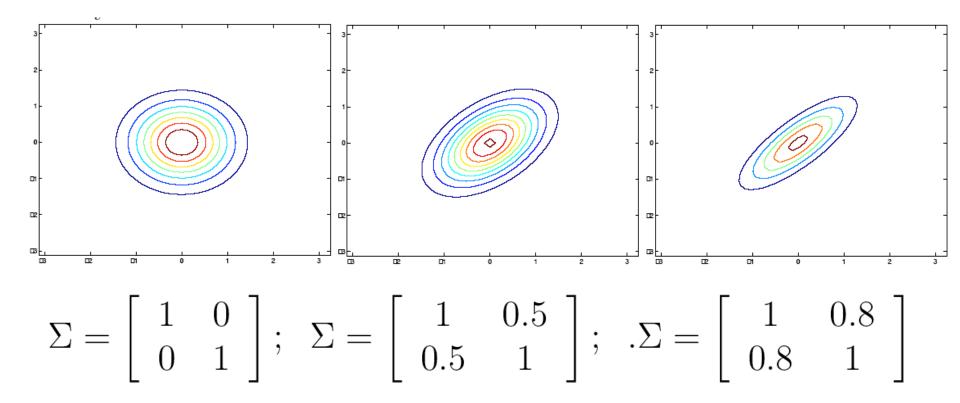
• Instead of a single mean μ and variance σ :

$$f(x \mid \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp(-\frac{(x-\mu)^2}{2\sigma^2})$$

- Vector of means μ and covariance matrix Σ

$$f(x \mid \mu, \Sigma) = \frac{1}{(2\pi)^{n/2} \mid \Sigma \mid^{1/2}} \exp\left(-\frac{1}{2}(x - \mu)^T \Sigma^{-1}(x - \mu)\right)$$

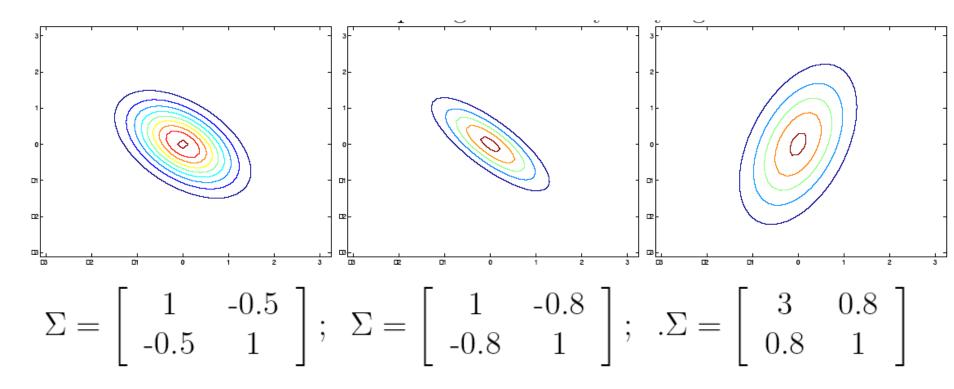
Gaussian Intuitions: off-diagonal



 As we increase the off-diagonal entries, more correlation between value of x and value of y

Text and figures from Andrew Ng's lecture notes for CS229

Gaussian Intuitions: off-diagonal and diagonal



Decreasing non-diagonal entries (#1-2)

Increasing variance of one dimension in diagonal (#3)

Text and figures from Andrew Ng's lecture notes for CS229

But: assume diagonal covariance

- I.e., assume that the features in the feature vector are uncorrelated
- This isn't true for FFT features, but is true for MFCC features, as we will see.
- Computation and storage much cheaper if diagonal covariance.
- I.e. only diagonal entries are non-zero
- Diagonal contains the variance of each dimension σ_{ii}^{2}
- So this means we consider the variance of each acoustic feature (dimension) separately

Diagonal covariance

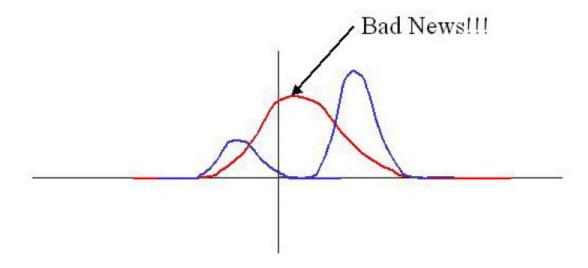
- Diagonal contains the variance of each dimension ${\sigma_{\rm ii}}^2$
- So this means we consider the variance of each acoustic feature (dimension) separately

$$f(x \mid \mu, \sigma) = \prod_{d=1}^{D} \frac{1}{\sigma_j \sqrt{2\pi}} \exp\left(-\frac{1}{2} \left(\frac{x_d - \mu_d}{\sigma_d}\right)^2\right)$$

$$f(x \mid \mu, \sigma) = \frac{1}{2\pi^{D/2} \prod_{d=1}^{D} \sigma_d^2} \exp(-\frac{1}{2} \sum_{d=1}^{D} \frac{(x_d - \mu_d)^2}{\sigma_d^2})$$

But we're not there yet

 Single Gaussian may do a bad job of modeling distribution in any dimension:



Solution: Mixtures of Gaussians

Figure from Chen, Picheney et al slides

Mixtures of Gaussians

• M mixtures of Gaussians:

$$f(x \mid \mu_{jk}, \Sigma_{jk}) = \sum_{k=1}^{M} c_{jk} N(x, \mu_{jk}, \Sigma_{jk})$$
$$b_{j}(o_{t}) = \sum_{k=1}^{M} c_{jk} N(o_{t}, \mu_{jk}, \Sigma_{jk})$$

For diagonal covariance:

$$b_{j}(o_{t}) = \sum_{k=1}^{M} \frac{c_{jk}}{2\pi^{D/2} \prod_{d=1}^{D} \sigma_{jkd}^{2}} \exp(-\frac{1}{2} \sum_{d=1}^{D} \frac{(x_{jkd} - \mu_{jkd})^{2}}{\sigma_{jkd}^{2}})$$

GMMs

- Summary: each state has a likelihood function parameterized by:
 - M Mixture weights
 - M Mean Vectors of dimensionality D
 - Either
 - M Covariance Matrices of DxD
 - Or more likely
 - M Diagonal Covariance Matrices of DxD
 - which is equivalent to
 - M Variance Vectors of dimensionality D

Where we are

- Given: A wave file
- Goal: output a string of words
- What we know: the acoustic model
 - How to turn the wavefile into a sequence of acoustic feature vectors, one every 10 ms
 - If we had a complete phonetic labeling of the training set, we know how to train a gaussian "phone detector" for each phone.
 - We also know how to represent each word as a sequence of phones
- What we knew from Chapter 4: the language model
- Next:
 - Seeing all this back in the context of HMMs
 - Search: how to combine the language model and the acoustic model to produce a sequence of words

Decoding

• In principle: $\hat{W} = \underset{W \in \mathscr{L}}{\operatorname{argmax}} \xrightarrow{P(O|W)} \stackrel{\text{prior}}{\widetilde{P(W)}}$

In practice:

 $\hat{W} = \operatorname*{argmax}_{W \in \mathscr{L}} P(O|W) P(W)^{LMSF}$

 $\hat{W} = \operatorname*{argmax}_{W \in \mathscr{L}} P(O|W) P(W)^{LMSF} WIP^{N}$

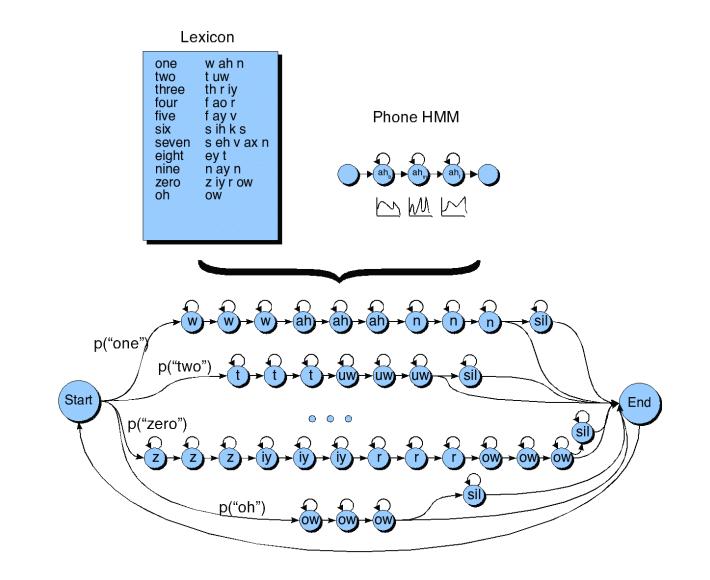
 $\hat{W} = \operatorname*{argmax}_{W \in \mathscr{L}} \log P(O|W) + LMSF \times \log P(W) + N \times \log WIP$

HMMs for speech

$Q = q_1 q_2 \dots q_N$	a set of states corresponding to subphones						
$A = a_{01}a_{02}\ldots a_{n1}\ldots a_{nn}$	a transition probability matrix A , each a_{ij} rep-						
	resenting the probability for each subphone of						
	taking a self-loop or going to the next subphone.						
	Together, Q and A implement a pronunciation						
	lexicon, an HMM state graph structure for each						
	word that the system is capable of recognizing.						
$B = b_i(o_t)$	A set of observation likelihoods:, also called emission probabilities, each expressing the						
	probability of a cepstral feature vector (observa-						
	tion o_t) being generated from subphone state <i>i</i> .						

19

HMM for digit recognition task



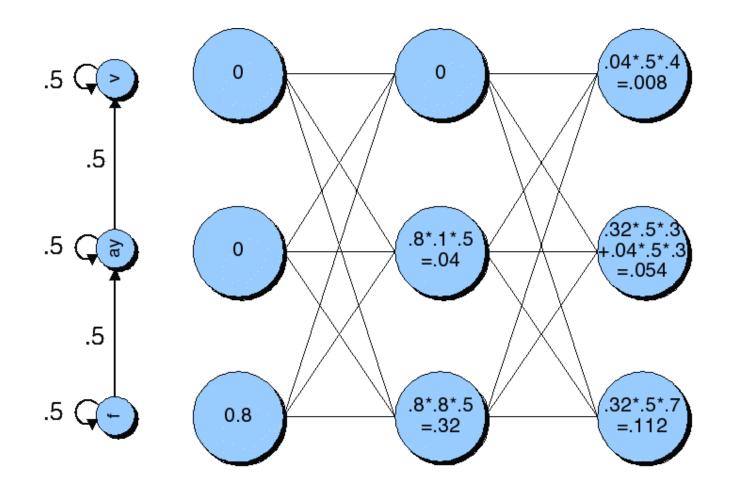
The Evaluation (forward) problem for speech

- The observation sequence O is a series of MFCC vectors
- The hidden states W are the phones and words
- For a given phone/word string W, our job is to evaluate P(O|W)
- Intuition: how likely is the input to have been generated by just that word string W

Evaluation for speech: Summing over all different paths!

- fay ay ay ay v v v v
- ffay ay ay ay v v v
- fffay ay ay ay v
- ffay ay ay ay ay ay v
- ffay ay ay ay ay ay ay ay v
- ffayvvvvvv

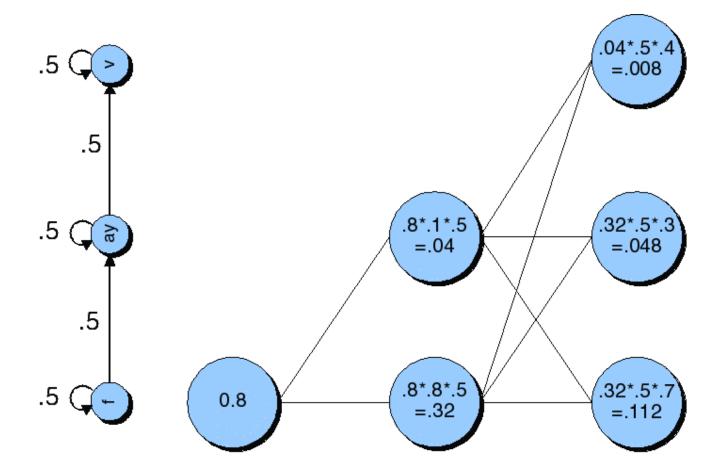
The forward lattice for "five"



The forward trellis for "five"

V	0 0		0.008	0.0093	0.0114	0.00703	0.00345	0.00306	0.00206	0.00117	
AY	0	0.04	0.054	0.0664	0.0355	0.016	0.00676	0.00208	0.000532	0.000109	
F	0.8	0.32	0.112	0.0224	0.00448	0.000896	0.000179	4.48e-05	1.12e-05	2.8e-06	
Time	1	2	3	4	5	6	7	8	9	10	
	f 0.8	f 0.8	f 0.7	f 0.4	f 0.4	f 0.4	f 0.4	f 0.5	f 0.5	f 0.5	
	ay 0.1	ay 0.1	ay 0.3	ay 0.8	ay 0.8	ay 0.8	ay 0.8	ay 0.6	ay 0.5	ay 0.4	
B	v 0.6	v 0.6	v 0.4	v 0.3	v 0.3	v 0.3	v 0.3	v 0.6	v 0.8	v 0.9	
	p 0.4	p 0.4	p 0.2	p 0.1	p 0.1	p 0.1	p 0.1	p 0.1	р 0.3	p 0.3	
	iy 0.1	iy 0.1	iy 0.3	iy 0.6	iy 0.6	iy 0.6	iy 0.6	iy 0.5	iy 0.5	iy 0.4	
.											

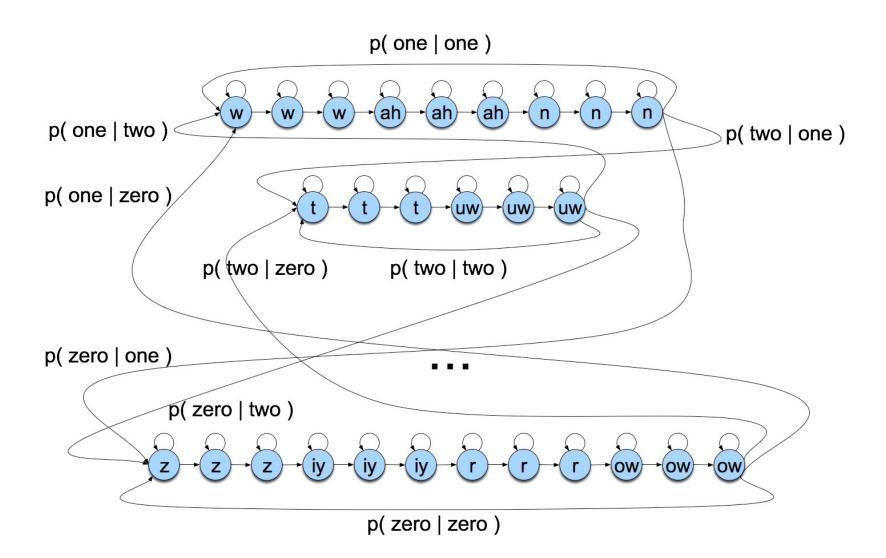
Viterbi trellis for "five"



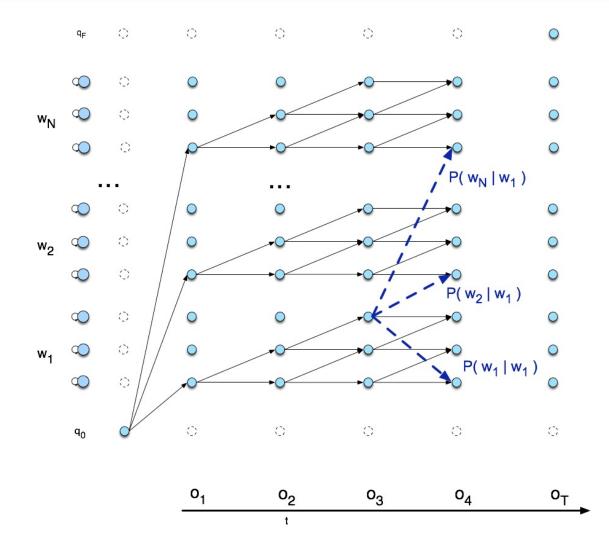
Viterbi trellis for "five"

V	0 0		0.008 (0.0	0.0072		0.00672		0.00403		0.00188		0.00161		0.000667		0.000493			
AY	0		0	0.04 0.048		0.0448		0.	0.0269		0.0125		0.00538		0.00167		0.000428		8.78e-05		
F	0.8		0.32		0.112		0.0224		0.00448		0.000896		0.000179		4.48e-05		1.12e-05		2.8e-06		
Time	e 1		2		3		4			5		6		7		8		9		10	
	f	0.8	f	0.8	f	0.7	f	0.4	f	0.4	f	0.4	f	0.4	f	0.5	f	0.5	f	0.5	
	ay	0.1	ay	0.1	ay	0.3	ay	0.8	ay	0.8	ay	0.8	ay	0.8	ay	0.6	ay	0.5	ay	0.4	
В	v	0.6	v	0.6	v	0.4	v	0.3	v	0.3	v	0.3	v	0.3	v	0.6	v	0.8	v	0.9	
	p	0.4	р	0.4	р	0.2	р	0.1	р	0.1	р	0.1	р	0.1	р	0.1	р	0.3	р	0.3	
	iy	0.1	iy	0.1	iy	0.3	iy	0.6	iy	0.6	iy	0.6	iy	0.6	iy	0.5	iy	0.5	iy	0.4	

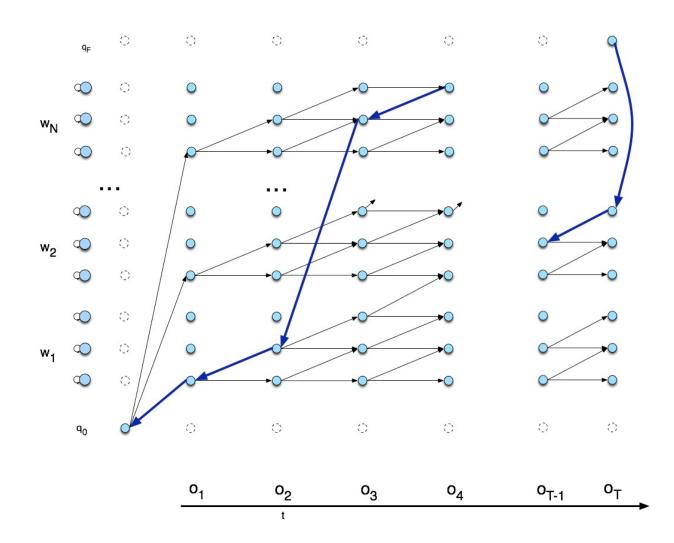
Search space with bigrams



Viterbi trellis



Viterbi backtrace



Evaluation

How to evaluate the word string output by a speech recognizer?

Word Error Rate

• Word Error Rate =

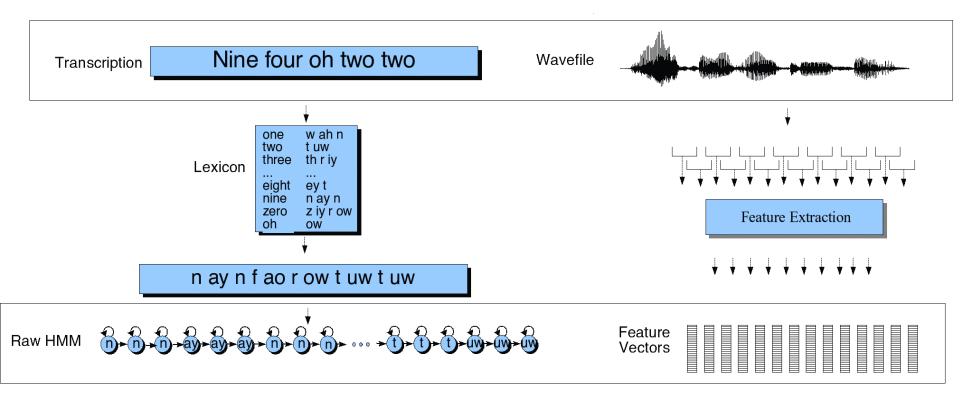
100 (Insertions+Substitutions + Deletions)

Total Word in Correct Transcript Aligment example: REF: portable **** PHONE UPSTAIRS last night so HYP: portable FORM OF STORES last night so Eval I S S WER = 100 (1+2+0)/6 = 50%

Better metrics than WER?

- WER has been useful
- But should we be more concerned with meaning ("semantic error rate")?
 - Good idea, but hard to agree on
 - Has been applied in dialogue systems, where desired semantic output is more clear

Training



Summary: ASR Architecture

- Five easy pieces: ASR Noisy Channel architecture
 - 1) Feature Extraction: 39 "MFCC" features
 - 2) Acoustic Model: Gaussians for computing p(o|q)
 - 3) Lexicon/Pronunciation Model
 - HMM: what phones can follow each other
 - 4) Language Model
 - N-grams for computing p(w_i|w_{i-1})
 - 5) Decoder
 - Viterbi algorithm: dynamic programming for combining all these to get word sequence from speech!

Summary

- ASR Architecture
 - The Noisy Channel Model
- Five easy pieces of an ASR system
 1) Language Model
 2) Lexicon/Pronunciation Model (HMM)
 3) Feature Extraction
 4) Acoustic Model
 5) Decoder
- Training
- Evaluation