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Outline for ASR

▪ ASR Architecture 
▪ The Noisy Channel Model 

▪ Five easy pieces of an ASR system 
1) Language Model 
2) Lexicon/Pronunciation Model (HMM) 
3) Feature Extraction 
4) Acoustic Model 
5) Decoder 

▪ Training 
▪ Evaluation
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Acoustic Modeling  
(= Phone detection)

▪ Given a 39-dimensional vector 
corresponding to the observation of one 
frame oi 

▪ And given a phone q we want to detect 
▪ Compute p(oi|q) 

▪ Most popular method: 
▪ GMM (Gaussian mixture models) 

▪ Other methods 
▪ Neural nets, CRFs, SVM, etc
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Problem: how to apply HMM model 
to continuous observations?

▪ We have assumed that the output alphabet 
V has a finite number of symbols 

▪ But spectral feature vectors are real-
valued! 

▪ How to deal with real-valued features? 
▪ Decoding: Given ot, how to compute P(ot|q) 
▪ Learning: How to modify EM to deal with real-

valued features
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Better than VQ
▪ vector quantization is insufficient for real ASR 
▪ Instead: Assume the possible values of the observation feature 

vector ot are normally distributed. 

▪ Represent the observation likelihood function bj(ot) as a Gaussian 
with mean µj and variance σj

2

€ 

f (x |µ,σ ) =
1

σ 2π
exp(− (x −µ)2

2σ 2 )
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Using a (univariate Gaussian) as an 
acoustic likelihood estimator

▪ Let’s suppose our observation was a single 
real-valued feature (instead of 39D vector) 

▪ Then if we had learned a Gaussian over 
the distribution of values of this feature 

▪ We could compute the likelihood of any 
given observation ot as follows:
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Training a Univariate Gaussian

▪ A (single) Gaussian is characterized by a mean and a 
variance 

▪ Imagine that we had some training data in which 
each state was labeled 

▪ We could just compute the mean and variance from 
the data:

€ 

µi =
1
T

ot
t=1

T

∑  s.t. ot  is  state  i

€ 

σ i
2 =

1
T

(ot
t=1

T

∑ −µi)
2  s.t. ot  is  state  i
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Training Univariate Gaussians

▪ But we don’t know which observation was produced 
by which state! 

▪ What we want: to assign each observation vector ot 
to every possible state i, prorated by the probability 
the the HMM was in state i at time t. 

▪ The probability of being in state i at time t is ξt(i)!!

€ 

σ 2i =

ξ t (i)(ot −µi)
2

t=1

T

∑

ξ t (i)
t=1

T

∑

€ 

µ i =

ξ t (i)ot
t=1

T

∑

ξ t (i)
t=1

T

∑
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Multivariate Gaussians

▪ Instead of a single mean µ and variance σ: 

▪ Vector of means µ and covariance matrix Σ

€ 

f (x |µ,σ ) =
1

σ 2π
exp(− (x −µ)2

2σ 2 )

€ 

f (x |µ,Σ) =
1

(2π )n / 2 |Σ |1/ 2
exp − 1
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Gaussian Intuitions: off-diagonal 

▪ As we increase the off-diagonal entries, more correlation between value of x and 
value of y

Text and figures from Andrew Ng’s lecture notes  for CS229 10



Gaussian Intuitions: off-diagonal 
and diagonal 

▪ Decreasing non-diagonal entries (#1-2) 
▪ Increasing variance of one dimension in diagonal (#3) 

Text and figures from Andrew Ng’s lecture notes  for CS229 11



But: assume diagonal covariance

▪ I.e., assume that the features in the feature vector 
are uncorrelated 

▪ This isn’t true for FFT features, but is true for MFCC 
features, as we will see. 

▪ Computation and storage much cheaper if diagonal 
covariance. 

▪ I.e. only diagonal entries are non-zero 
▪ Diagonal contains the variance of each dimension σii

2 
▪ So this means we consider the variance of each 

acoustic feature (dimension) separately
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Diagonal covariance

▪ Diagonal contains the variance of each 
dimension σii

2 

▪ So this means we consider the variance of 
each acoustic feature (dimension) separately

€ 

f (x |µ,σ ) =
1

σ j 2π
exp − 1

2
xd −µd

σ d
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∏
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But we’re not there yet

▪ Single Gaussian may do a bad job of 
modeling distribution in any dimension: 

▪ Solution: Mixtures of Gaussians
Figure from Chen, Picheney et al slides 14



Mixtures of Gaussians

▪ M mixtures of Gaussians: 

▪ For diagonal covariance:

€ 

bj (ot ) =
c jk

2π
D
2 σ jkd

2

d=1

D

∏
exp(− 1

2
(x jkd −µ jkd )

2

σ jkd
2

d=1

D

∑ )
k=1

M

∑
€ 

f (x |µ jk,Σ jk ) = c jkN(x,µ jk,Σ jk )
k=1

M

∑

€ 

bj (ot ) = c jkN(ot ,µ jk,Σ jk )
k=1

M

∑
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GMMs

▪ Summary: each state has a likelihood 
function parameterized by: 
▪ M Mixture weights 
▪ M Mean Vectors of dimensionality D 
▪ Either 
▪ M Covariance Matrices of DxD 

▪ Or more likely 
▪ M Diagonal Covariance Matrices of DxD 
▪  which is equivalent to 
▪ M Variance Vectors of dimensionality D
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Where we are
▪ Given: A wave file 
▪ Goal: output a string of words 
▪ What we know: the acoustic model 

▪ How to turn the wavefile into a sequence of acoustic feature 
vectors, one every 10 ms 

▪ If we had a complete phonetic labeling of the training set, we 
know how to train a gaussian “phone detector” for each phone. 

▪ We also know how to represent each word as a sequence of 
phones 

▪ What we knew from Chapter 4: the language model 
▪ Next: 

▪ Seeing all this back in the context of HMMs 
▪ Search: how to combine the language model and the acoustic 

model to produce a sequence of words
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Decoding

▪ In principle: 

▪ In practice:
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HMMs for speech
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HMM for digit recognition task
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The Evaluation (forward) problem for 
speech

▪ The observation sequence O is a series of 
MFCC vectors 

▪ The hidden states W are the phones and 
words 

▪ For a given phone/word string W, our job is 
to evaluate P(O|W) 

▪ Intuition: how likely is the input to have 
been generated by just that word string W
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Evaluation for speech: Summing over 
all different paths!

▪ f ay ay ay ay v v v v  
▪ f f ay ay ay ay v v v  
▪ f f f f ay ay ay ay v 
▪ f f ay ay ay ay ay ay v 
▪ f f ay ay ay ay ay ay ay ay v 
▪ f f ay v v v v v v v 
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The forward lattice for “five”
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The forward trellis for “five”
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Viterbi trellis for “five”
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Viterbi trellis for “five”
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Search space with bigrams
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Viterbi trellis 
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Viterbi backtrace
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Evaluation

▪ How to evaluate the word string output by 
a speech recognizer?
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Word Error Rate

▪ Word Error Rate =   
100 (Insertions+Substitutions + Deletions) 
     ------------------------------ 
      Total Word in Correct Transcript 
Aligment example: 
REF:   portable ****     PHONE UPSTAIRS last night so 
HYP:   portable FORM  OF       STORES    last night so 
Eval               I         S        S 
   WER = 100 (1+2+0)/6 = 50%
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Better metrics than WER?

▪ WER has been useful 
▪ But should we be more concerned with meaning 

(“semantic error rate”)? 
▪ Good idea, but hard to agree on 
▪ Has been applied in dialogue systems, where desired 

semantic output is more clear
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Training



Summary: ASR Architecture

▪ Five easy pieces: ASR Noisy Channel 
architecture 
1) Feature Extraction:  

39 “MFCC” features 
2) Acoustic Model:  

Gaussians for computing p(o|q) 
3) Lexicon/Pronunciation Model 

• HMM: what phones can follow each other 
4) Language Model 

• N-grams for computing p(wi|wi-1) 
5) Decoder 

• Viterbi algorithm: dynamic programming for combining all 
these to get word sequence from speech!
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Summary

▪ ASR Architecture 
▪ The Noisy Channel Model 

▪ Five easy pieces of an ASR system 
1) Language Model 
2) Lexicon/Pronunciation Model (HMM) 
3) Feature Extraction 
4) Acoustic Model 
5) Decoder 

▪ Training 
▪ Evaluation
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